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Abstract The frequency/magnitude distribution of earthquakes can be approximated by an exponential law
whose exponent (the so‐called bvalue) is routinely used for probabilistic seismic hazard assessment. The bvalue is
commonly measured using Aki's maximum likelihood estimation, although biases can arise from the choice of
completeness magnitude (i.e., the magnitude below which the exponential law is no longer valid). In this work,
we introduce the b‐Bayesian method, where the full frequency‐magnitude distribution of earthquakes is
modeled by the product of an exponential law and a detection law. The detection law is characterized by two
parameters, which we jointly estimate with the bvalue within a Bayesian framework. All available data are used to
recover the joint probability distribution. The b‐Bayesian approach recovers temporal variations of the bvalue and
the detectability using a transdimensional Markov‐chain Monte Carlo algorithm to explore numerous
configurations of their time variations. An application to a seismic catalog of far‐western Nepal shows that
detectability decreases significantly during the monsoon period, while the bvalue remains stable around 0.8,
albeit with larger uncertainties. This bvalue lower than 1 is expected in such a region with large interseismic strain
accumulation. This confirms that the bvalue can be estimated independently of variations in detectability (i.e.,
completeness). Our results are compared with those obtained using the maximum likelihood estimation, and
using the b‐positive approach, showing that our method avoids dependence on arbitrary choices such as window
length or completeness thresholds.

Plain Language Summary Above a magnitude of completeness (Mc) , all earthquakes are
considered to have been detected, and the frequency distribution of earthquakes per unit of magnitudes follows
an exponential law, known as the Gutenberg‐Richter law, whose exponent is the so‐called bvalue. The study of
the spatio‐temporal variations of bvalue has attracted much attention in recent years. In particular, it is thought to
vary with increasing stress state and has recently been proposed to discriminate foreshock sequences. Therefore,
a robust estimation of its variations and uncertainties is needed. In this paper, we present a new method, called b‐
Bayesian, to properly estimate the temporal variations of bvalue within a probabilistic framework. The b‐
Bayesian method has the following advantages: (a) it uses all available earthquake data from an earthquake
catalog without the need to truncate them above the completeness magnitude, (b) it jointly considers the
temporal variations of detectability and bvalue, and (c) it operates within a Bayesian framework. As a first
application, we chose an earthquake catalog from far‐western Nepal with significant variations in detectability.
We compared the full probability distributions obtained with our new approach with maximum likelihood
estimates from classical approaches.

1. Introduction
Classically, the probability density function of an earthquake of magnitudem above a magnitude of completeness
Mc follows the Gutenberg‐Richter law (Aki, 1965):

p(m) = βe− β(m− Mc) (1)

where β = bvalue × ln(10). The bvalue is the seismic parameter that describes the relative number of large
magnitude earthquakes versus smaller magnitude earthquakes. For global earthquake catalogs, the bvalue is
typically close to 1, but has been shown to vary in both space and time when focusing on earthquake catalogs for
specific seismogenic regions or time periods (e.g., Ogata & Katsura, 2006; Wiemer & Wyss, 1997). With the
rapid growth of seismological instruments and recording capabilities, there is a need for advanced statistical
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methods to analyze earthquake catalogs. Here, we analyze the distribution of earthquake magnitudes, focusing on
the possibility to observe and interpret temporal variations in this distribution.

The Gutenberg‐Richter law is widely used as an earthquake recurrence model for Probabilistic Seismic Hazard
Assessment (PSHA) studies (e.g., Cornell, 1968; Drouet et al., 2020). Consequently, the accurate estimation of
bvalue and its uncertainties play a crucial role in the accuracy and robustness of seismic hazard estimates (e.g.,
Beauval & Scotti, 2004; Keller et al., 2014; Taroni & Akinci, 2020). For accurate hazard assessment, bvalue biases
due to the incompleteness of earthquake catalogs need to be addressed (e.g., Beauval & Scotti, 2004; Dut-
foy, 2020; Plourde, 2023; Weichert, 1980) as well as possible temporal or spatial variations of the bvalue (e.g.,
Beauval & Scotti, 2003; Yin & Jiang, 2023).

The physical interpretation of these spatio‐temporal variations in the frequency‐magnitude distribution of
earthquakes has been a subject of ongoing debate for years (e.g., Carter & Berg, 1981; Herrmann et al., 2022;
Mogi, 1962; Scholz, 1968). Based on observations from laboratory earthquake simulations, which are commonly
used as analogs to study natural earthquake behavior, it has been proposed that bvalue is inversely related to the
normal and shear stress applied to the fault (Scholz, 1968). At the scale of the seismic cycle, reproduced in stick‐
slip experiments with controlled stress and friction properties, bvalue has been observed to decrease linearly with
stress build‐up and to increase abruptly with the release of stress drops during earthquake rupture (Avlonitis &
Papadopoulos, 2014; Bolton et al., 2020; Goebel et al., 2017; Rivière et al., 2018). Extending this observation to
real earthquake systems is not straightforward because real earthquake catalogs contain additional uncertainties,
and the estimation of the actual state of the stress field is another inverse problem.

However, bvalue is also widely used to characterize real earthquake catalogs. It is commonly estimated to char-
acterize earthquake clusters and discriminate between seismic swarms (e.g., De Barros et al., 2019). Some vari-
ations in bvalue have been observed for different earthquakes depths or within different stress regimes (Morales‐
Yáñez et al., 2022; Mori & Abercrombie, 1997; Petruccelli et al., 2019; Scholz, 2015; Schorlemmer et al., 2005).
Low bvalue (<0.8), associated with a larger number of large magnitude earthquakes compared to the normal regime,
have been observed for several earthquake sequences occurring before a large earthquake rupture (e.g., Nanjo
et al., 2012;Chan et al., 2012;H. Shi et al., 2018; Li&Chen, 2021;Van der Elst, 2021;Kwiatek et al., 2023;Wetzler
et al., 2023). This observation has a major impact for the identification of precursory phases before large main-
shocks. Recently, bvalue monitoring has been proposed to serve as a stress‐meter for discrimination of foreshock
sequences (e.g., Gulia & Wiemer, 2019; Ito & Kaneko, 2023). This topic remains under debate due to large un-
certainties that could arise either from earthquake catalogs or from bvalue estimation approaches (e.g., Geffers
et al., 2022; Godano et al., 2024; Lombardi, 2021; Spassiani et al., 2023; Yin & Jiang, 2023).

The most classical approach for estimating bvalue from a catalog of earthquake magnitudes is the maximum
likelihood estimation (MLE) of Aki and its generalization (Aki, 1965; Utsu, 1966), which depends on the
arbitrary choice of the completeness magnitude Mc:

β =
1

m − Mc
(2)

with m the mean of magnitudes greater thanMc. Using this formula, only events with magnitudes larger than Mc
are used to estimate β.

Unnoticed changes in completeness over time are the main source of bias when studying bvalue temporal variations
(e.g., Godano et al., 2023; Helmstetter et al., 2006; Lombardi, 2021; Mignan & Woessner, 2012; Plourde, 2023;
Woessner & Wiemer, 2005). Two main sources of incompleteness are usually identified (e.g., Lippiello &
Petrillo, 2024): (a) the background incompleteness coming from momentary changes in the detectability of the
seismic network, and (b) the short‐term aftershock incompleteness (STAI) which describes the short but large
changes in completeness that occur during mainshock‐aftershock sequences where large earthquakes mask
smaller ones (e.g., Hainzl & Fischer, 2002; Helmstetter et al., 2006). The b‐positive approach (Van der Elst, 2021)
is a variant of Aki's maximum likelihood approach, using differences in the magnitudes of successive earthquakes
to propose a moving‐window estimate of temporal changes in the bvalue during mainshock‐aftershock sequences
without being biased by STAI.
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β =
1

mʹ+ − dMc
(3)

with mʹ+ the mean of positive consecutive magnitudes differences greater than dMc, which is a chosen value that
should be greater than twice the minimum magnitude difference. Based on the fact that two consecutive events in
a mainshock‐aftershock sequence share the same completeness, this approach is now frequently used for a more
accurate estimation of temporal variations of bvalue.

Even though the b‐positive approach provides a major advantage in comparison to Aki's classical approach, it still
suffers from its dependence on the choice of dMc and to the size of the moving‐window (e.g., Lippiello &
Petrillo, 2024). Furthermore, the bvalue estimate obtained with the original b‐positive approach is computed from
less than half of the available data. Recently, the novel b‐more positive approach has been proposed to overcome
some of the shortcomings of the b‐positive approach by including not only consecutive pairs of earthquake
magnitudes (Lippiello & Petrillo, 2024). In addition, 1σ uncertainties of the b‐positive approach can be derived
through a theoretical formulation (Tinti & Gasperini, 2024).

In this paper, we introduce the b‐Bayesian approach to explore the temporal variation of bvalue, while addressing
the problems of classical frequentist approaches. We propose to invert for bvalue using the entire catalog, taking
into account a detectability function. By adopting this approach, our results are independent of the arbitrary choice
of a completeness magnitude. Instead of traditional methods that compare frequency‐magnitude distributions
over random data subsets or that recover pseudo‐continuous temporal variations using moving time windows, we
address temporal variations in bvalue and detectability by considering the number and positions of temporal
discontinuities where bvalue or detectability changes. The inversion of temporal discontinuities is achieved using a
transdimensional framework.

Transdimensional inversion is commonly used in seismic tomography to allow the data to determine the level of
spatial complexity in the recovered tomographic model (e.g., Bodin et al., 2012; Bodin & Sambridge, 2009). It has
recently been adapted to estimate variations in the bvalue from truncated catalogs along one dimension, such as time
or depth (Morales‐Yáñez et al., 2022). Here, we use transdimensional inversion to recover one‐dimensional par-
titions of the entire earthquake data set. A Bayesian framework provides a global formulation of the inverse
problem and allows for the probabilistic estimation of temporal changes of bvalue, and detectability. The complexity
of the model does not depend on any arbitrary parameter, but is determined by the complexity of the data.

This paper is organized as follows. First, we describe the novel b‐Bayesian approach for a time‐invariant case,
including the assessment of detectability using all available magnitude data. We describe how we extend this
approach using a transdimensional framework in order to invert for temporal variations based on the complexity
of the data. We present the results obtained using a synthetic catalog generated to mimic real‐world scenarios. A
first application of the b‐Bayesian method is presented using a real earthquake catalog in far western Nepal. In this
region, where the last great earthquake has been dated to 1,505, the strain from the India‐Asia collision has been
building up for more than 500 years. According to the recent studies relating bvalue and stress, a low and
potentially decreasing bvalue could be expected in such a region undergoing a long‐term strain accumulation. We
compare the results of b‐Bayesian with the two frequentist approaches: the maximum likelihood estimate and the
b‐positive to describe the temporal variation of bvalue and the temporal variations of detectability for an earthquake
catalog of far‐western Nepal spanning 2 years of microseismicity.

2. Method: A Bayesian Framework
In this study, a data set is an earthquake catalog which corresponds to a set of N observations of (non‐discrete)
magnitudes mi (i = 1…N) that we note:

d = [m1,m2,…mN] (4)

From hereafter, we refer to conditional probabilities using p(a|b). We know from the Gutenberg‐Richter law
(Equation 1) that the probability density of observing one earthquake i of magnitude mi ≥Mc for a given β is:
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p(mi|β) = βe− β(mi − Mc) (5)

which is true only for mi >Mc. Then, assuming that the magnitudes of the seismic events are independent, we can
write the probability of observing the entire earthquake data set d with mi ≥Mc, p(d|β), as:

p(d|β) =∏
N

i=1
p(mi|β) = βNe− βN(mi− Mc) (6)

where mi, is the mean magnitude of events with mi ≥Mc and Mc, the magnitude of completeness. Note here that
the value of β that maximizes Equation 6 is the maximum likelihood solution given by Aki's formula in
Equation 2.

2.1. The Temporally Invariant Case

In practise, seismic catalogs are truncated at the completeness magnitude Mc in order to avoid biases due to the
detection capacity (e.g., Aki, 1965; Utsu, 1966). As a result, the classical approach for bvalue estimation strongly
depends on the choice made for Mc. Various methods have been developed for assessing the completeness
magnitude (e.g., Mignan & Woessner, 2012; Ogata & Katsura, 1993; Ringdal, 1975; Woessner & Wiemer, 2005)
or to correct the data set for its temporal variations (e.g., Cao & Gao, 2002; Chan et al., 2012; Helmstetter
et al., 2006).

However, defining such a completeness magnitude always implies to ignore a significant portion of a data set that
may contain valuable information about the statistics of seismicity. Here instead, we propose to analyze the entire
data set by modeling the entire frequency‐magnitude distribution of earthquakes including magnitudes below the
completeness Mc. To do so, the Gutenberg‐Richter law is modulated by a detection law q(m) such that now:

p(mi|β) =
1
K
q(mi)βe− β(mi − Mmin) (7)

whereMmin is the minimum earthquake magnitude in the catalog, a cut‐off threshold below which no earthquakes
have been reported. This minimum magnitude allows to restrict the distribution to the range of observed mag-
nitudes and to include negative magnitudes. There, q(m) defines the probability density of detecting an event and,
K a constant to insure that the probability distribution integrates to one:

∫

∞

Mmin

p(mi|β) dm = 1 (8)

In this way, the probability of observing an event is the product of the probability of occurrence (given by the
Gutenberg Richter law) and the probability of detection (given by the detection law q(m) that varies from 0, no
detection, to 1, 100% detection). The error function has been proposed in the literature to represent the probability
of detection of an event in the presence of log‐normal seismic noise (e.g., Daniel et al., 2008; Ogata & Kat-
sura, 1993; Ringdal, 1975). The error function (see Figure 1a) depends on two parameters μ and σ such as:

q(m) =
1
2
+

1
2
erf (

m − μ
̅̅̅
2
√

σ
) (9)

where μ represents 50% of probability of detection for an earthquake of magnitude m = μ, and becomes 84% for
m = μ + σ. The magnitude of completeness is the equivalent of the 84% threshold. This function fits adequately
the frequency‐magnitude distribution for a variety of cases (Ogata & Katsura, 1993; Woessner & Wiemer, 2005).

From Equations 7 and 8, we can write:

K =∫

∞

Mmin

q(m)βe− β(m− Mmin)dm (10)
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Fortunately, this integral for the error function q(m) in Equation 9 has a closed form solution between Mmin and
infinity:

K = q(Mmin) + (1 − q(Mmin + βσ2)) exp(
β2σ2

2
− β(μ − Mmin)) (11)

Now assuming that magnitudes are independent, the probability of observing a full data set d is:

p(d|ω) =∏
N

i=1
p(mi|ω) = (

β
K
)

N

∏
N

i=1
q(mi) × e− βN(mi − Mmin) (12)

where ω = [β,μ,σ] is our set of three unknown model parameters. Our goal here is to estimate these parameters
from a set of realizations d. This is an inverse problem that can be formulated in a Bayesian framework, where the
posterior solution p(ω|d) is the product between the model priors and the likelihood function p(d|ω)
(Equation 12).

p(ω|d)∝ p(β,μ,σ)p(d|ω) (13)

Here, we set independent uniform prior distributions for the three parameters, partly because they are not related
to the same physics: bvalue is related to seismicity and μ and σ to network detectability. Although we can expect
correlations between these parameters from the data (i.e., a posteriori), our level of knowledge is independent for
each parameter. This independence greatly facilitates Bayesian inference. For each parameter, we use a simple
uniform prior distribution, independently defined between a fixed range of realistic values. The choice of the
bounds is guided by the literature and should be chosen depending on the seismotectonic context and the mean
detectability of the network. We advise to impose a relatively wide range of values for the bvalue inference,
allowing both high (>1) and low (<1) bvalue for an earthquake catalog. In the context of geothermal or volcanic
activity, this range may be extended to allow larger values (up to 2.5) for the bvalue. The choice of bounds for the μ
parameter should be guided by the level of detectability of the seismic network and the “expected” variations in
completeness. For a local network (seismicity included within 50 km), which essentially records microseismicity,
we can set this range of values between 0.5 and 2. In the presence of at least one large mainshock/aftershock
sequence, this range should also be increased. The prior distribution on σ can be set between 0.01 and 0.5 and does
not need to be adjusted depending on the context.

Figure 1. (a) [Top] Detection function q(m) associated with the synthetic data set [Bottom] Frequency‐magnitude distribution
of a synthetic catalog with values of bvalue = 0.9, μ = 0.75 and σ = 0.34. The red dotted line corresponds to the model
ω = [0.92,0.76,0.35] that best fits the observations. The yellow area corresponds to the distribution of magnitudes inferior to
(μ + σ) that are usually removed by classical approaches (about 60% of available data). (b) Marginal distributions of the
posterior function: p(bvalue|d) , p(μ|d) and p(σ|d) from left to right, respectively. Here, posterior functions are normalized by
their maximum. (c) 2D marginal distributions of the posterior function. True values are represented by red crosses.
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The posterior distribution (Equation 13) can be numerically approximated using a classical Monte‐Carlo
approach.

As an example, we construct a synthetic data set of 4,460 independent magnitudes, randomly drawn from a
Gutenberg‐Richter law characterized by bvalue = β

log(10) = 0.9 and modulated by an error detection function
characterized by μ= 0.75 and σ = 0.34 (see Figure 1a). We then estimate our set of parametersω = [β,μ,σ] from
the catalog, by approximating the posterior distribution p(ω|d) with a standard Monte Carlo scheme by randomly
sampling the model priors. The resulting 3D posterior density function (PDF) can be projected onto each
parameter (Figure 1b) to derive 1D and 2D marginal distributions (Figure 1c). For example, the marginal dis-
tribution for β is simply obtained by integrating the posterior over μ, and σ:

p(β|d) =∫∫p(β,μ,σ|d) dμ dσ (14)

Note that the 2D marginals are useful to show the correlations between pairs of parameters. Uncertainty estimates
of the three parameters can be obtained with the 1σ confidence interval.

Compared to optimization approaches where only the best fitting (i.e., maximum likelihood) ω is obtained, our
method provides the 3D posterior density distribution, p(ω|d), from which parameter correlations and un-
certainties can be estimated. Moreover, the data set is no longer truncated above a completeness magnitude,
instead, the full frequency‐magnitude distribution is now used to jointly invert for bvalue and detectability.

2.2. Temporal Variations of b‐Value

2.2.1. A Transdimensional Parametrization

Going one step further, we now consider that ω can vary with time and our goal is to recover the location of
temporal changes. Our three parameters in ω are considered constant in periods separated by abrupt changes (see
Figure 3). To that aim, temporal variations are modeled with a set of discontinuities T:

T = [T1,T2,…Tk] (15)

where, k is the number of temporal discontinuities and Tj ( j = 1… k) the times at which the frequency‐magnitude
distribution changes. The unknown models vectors of the time varying frequency‐magnitude distribution will be
denoted:

Figure 2. (a) Initial iteration of the Markov‐chain: plot of the conditional probability p(d|bvalue,T) , the probability of bvalue
for a fixed time model T of dimension k = 4. The 4 black vertical lines are the discontinuities of the proposed time model T.
The 3D posterior density function is computed for each data subset dj ( j = 1…5 ). The bold line is the mean posterior density
function of βj over time. Here, the synthetic earthquake data set has been constructed to represent 6 discontinuities. The six
green vertical dashed lines are the theoretical discontinuities. (b) Iteration 500 of the McMC: preliminary result of the bvalue time
variations, sum of the marginal density functions of the accepted models. The six discontinuities are almost all retrieved.
(c) Final iteration of the Markov‐Chain: sum of marginal density functions of the totality of accepted models. The final temporal
evolution of bvalue fits the true bvalue of the synthetic data set which are represented in bold dashed horizontal lines.
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Ω = [ω1,ω2,…ωk+1] (16)

whereωj = [βj,μj,σj] is the local model predicting the sub‐dataset dj between two discontinuities (Tj− 1, Tj). Note
that T0 = min(tobs) and Tk+1 = max(tobs) . The full posterior solution p(Ω,T|d) describes the joint probability
for local models [ω1,ω2,…ωk+1] predicting events between each temporal discontinuities [T1,T2,…Tk] of the
temporal model, T. Since the dimension of the model varies with the number of discontinuities, k, which is
unknown, the inverse problem is so‐called transdimensional. The posterior p(Ω,T|d) does not have an analytical
solution but can be sampled with a Monte Carlo algorithm. In this work, we propose to isolate the part of the
posterior solution that is transdimensional (and to sample it with an appropriate algorithm), and to separate it from
a part where the dimension is fixed.

That is, the full posterior solution p(Ω,T|d) can be developed as a product of a conditional term p(Ω|d,T) and a
marginal term p(T|d):

p(Ω,T|d) = p(Ω|d,T) × P(T|d) (17)

The following sections describe each of these terms in detail and how they can be approximated.

2.2.2. The Conditional Posterior p(Ω|d,T)

The conditional term p(Ω|d,T) describes the probability distribution for parametersΩ for a given time partition T
(Figure 2). It can be itself decomposed with the Bayes theorem into the product of a likelihood distribution and a
prior distribution:

p(Ω|d,T) = p(d|Ω,T) × p(Ω|T) (18)

Since all magnitudes are independent, the likelihood is the product of likelihoods for every sub‐dataset dj given by
the temporal model T:

Figure 3. (Top)Left, P(β|Tl − 1,d) over the 5 temporal segments (k = 4) of the proposed temporal modelTl − 1 for proposition
l − 1 of the rj‐McMC. On the right, the mean likelihood over the 5 temporal segments for the three marginals posterior
p(β|Tl − 1,d) , P(μ|Tl − 1,d) and P(σ|Tl − 1,d) . (bottom) New proposal model Tl in case of a death proposition of the rj‐McMC.
The two figures are the same as above: P(β|Tl,d) and the marginals computed for the proposed temporal model with a lower
dimension (k = 3).
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p(d|Ω,T) = ∏
k+1

j=1
p(dj|Ω,T) (19)

And since the magnitudes of events dj occurring between two discontinuities [Tj− 1,Tj] only depend on the local
parameters ωj = [βj,μj,σj] , we can write the likelihood:

p(d|Ω,T) = ∏
k+1

j=1
p(dj|ωj,T). (20)

where p(dj|ωj,T) is the likelihood of the data within a time period j which is simply given by Equation 12.

The prior distribution for Ω given a fixed temporal model T, p(Ω|T) from Equation 18, is chosen to be the same
within each partition p(ωj|T) , and simply corresponds to the uniform prior distribution used in the temporally
invariant case (Equation 13). Thus, the conditional posterior p(Ω|d,T) is easy to sample as different periods j can
be independently sampled with the same algorithm described in the previous section and used to produce results in
Figure 1. Therefore, for any partition of the time T, we know how to probabilistically estimate the parameters Ω.

The question now is to estimate the number and the position of discontinuities T. This is given by the marginal
posterior p(T|d).

2.2.3. The Marginal Posterior p(T|d)

p(T|d) describes the probability of the time partition T = [T1,T2,…Tk] given the full data set of observed
magnitudes. It can be obtained by integrating the full posterior p(Ω,T|d) over the parame-
ters Ω = [ω1,ω2,… ,ωk+1] :

p(T|d) =∫
Ω
p(Ω,T|d)dΩ (21)

According to Bayes' rule, the posterior density function p(Ω,T|d) is proportional to the product of the likelihood
p(d|Ω,T) times the joint prior p(Ω,T).

p(T|d)∝∫
Ω
p(d|Ω,T)p(Ω,T)dΩ (22)

The joint prior p(Ω,T) can be decomposed according to the property of joint density distributions
p(Ω,T) = p(T) × p(Ω|T). Applied to Equation 22, we get:

p(T|d)∝ p(T) ×∫
Ω
p(d,Ω|T)p(Ω|T)dΩ (23)

with p(T), the prior distribution for the time partitions and p(Ω|T), the prior for the models Ω given a fixed
temporal model which is also present in the conditional posterior (Equation 18). The prior p(T) is a joint dis-
tribution, where the prior for each discontinuity Tj is given by a uniform distribution bounded between min(tobs)
and max(tobs) . The prior p(Ω|T) corresponds to the model priors described in the temporally‐invariant case as
described for the section above.

The integral of Equation 23 can be decomposed as a product of integrals between each temporal subsets. Thus, the
full posterior can be expressed as:

p(T|d)∝ p(T) ×∫
ω1

…∫
ωk+1

p(d,ω1|T) p(ω1|T)…p(d,ωk+1|T) p(ωk+1|T) dω1…dωk+1 (24)
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Considering that the sub‐datasets dj of a time model T are independent, and since data set dj only depends on
parameters ωj, then Equation 25 can be simplified as:

p(T|d)∝ p(T) × ∏
k+1

j=1
(∫

ωj
p(dj|ωj,T) p(ωj|T) dωj) (25)

where, p(dj|ωj,T) is the likelihood of observing the subset dj between [Tj − 1,Tj] according to the local model ωj
and can be estimated using Equation 12 obtained in the time‐invariant case.

These integrals can be estimated using importance sampling. That is, for a large number of realizations xi,
i = (1,… ,N), randomly drawn from a distribution p(x):

∫ p(x)f (x)dx ≈
1
N
×∑

N

i=1
f (xi) (26)

Applied to Equation 26, we have:

p(T|d)∝ p(T) × (
1
Nω

)

(k+1)

∏
k+1

j=1
(∑

Nω

i=1
p(dj|ωj(i),T)) (27)

where for each period j, ωj(i) = [βj,μj,σj](i) for i = (1,… ,Nω) are a set of realizations randomly drawn from the
uniform prior distributions p(ωj|T) .

From Equation 27 we see that the marginal posterior is proportional to the product of the prior at temporal
discontinuities p(T) and the product of the mean likelihoods p(dj|ωj(i),T) , computed over Nw realizations of the
model priors, between each temporal discontinuity. In this way, adding an extra discontinuity will be valuable
only if it sufficiently increases the local likelihood p(dj|wj(i),T) to counterbalance this first effect.

Therefore, this methodology based on a Bayesian framework inherently follows the principle of parsimony,
finding a balance between finding a simple model with a low number of temporal discontinuities, k, and maxi-
mizing the overall likelihood p(d|Ω,T).

2.2.4. The Reversible‐Jump Markov‐Chain Monte‐Carlo Algorithm (Rj‐McMC)

The marginal posterior p(T|d) can be numerically approximated with Equation 27 but only for a given partitionT.
One way to estimate the full distribution p(T|d) is through a Monte Carlo exploration over the space of temporal
discontinuitiesT. The solution is then a large ensemble of partition vectorsT l (l = 1…Nl) , withNl the number of
realizations T l, whose distribution approximates the target solution p(T|d).

As the dimension of T varies with the number of discontinuities k, p(T|d) is a transdimensional function and
cannot be explored using a standard Metropolis algorithm (Hastings, 1970; Metropolis et al., 1953). One of the
most popular technique for exploring a transdimensional posterior is the rj‐McMC method (e.g., Green, 1995;
Sambridge et al., 2006, 2013) and more specifically the birth‐death Markov‐chain Monte Carlo (McMC) algo-
rithm (e.g., Geyer & Møller, 1994). The rj‐McMC algorithm, used in many geophysical inverse problems (e.g.,
Bodin et al., 2012; Gallagher et al., 2009; Gallagher et al., 2011), allows both the model parameters and the model
dimension (i.e., the number of parameters) to be inferred. The rj‐McMC follows the general principles of the
McMC approach by generating samples from the target distribution. A Markov chain follows a random walk,
where at each step, a proposed model T( p) is generated by randomly modifying a current model T(c) (Figure 3).
This proposed model is then either accepted (and replaces the current model) or rejected. In this way, each step of
the rj‐McMC is a part of a chain converging to the target distribution.

The convergence is considered sufficient by monitoring the evolution of the number of discontinuities toward a
stable value and when the rate of accepted models falls in the range of 20%–40%. Details about the algorithm are
given in Supporting Information S1. We also refer the reader to (Bodin et al., 2012) for further details.
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2.2.5. Appraising the Full Posterior Distribution p(Ω,T|d)

As a reminder, the solution to our inverse problem is the full posterior solution p(Ω,T|d) that describes the
temporal changes of β, μ, and σ. As shown in Equation 17, this posterior can be written as the product of the
marginal distribution p(T|d) describing the probability of temporal changes and a conditional distribution
p(Ω|T,d) for the parameters of the frequency‐magnitude distribution, given a set of temporal changes.

By decomposing in such a way the posterior distribution into a conditional and a marginal distribution, the
Metropolis‐Hastings rule is simplified by only simulating a transdimensional temporal point process for vector T
(e.g., Geyer & Møller, 1994; Green, 1995). With the rj‐McMC algorithm, we have a numerical way to
approximate the marginal probability distribution about the number and position of temporal changes p(T|d)
(Equation 27). In addition, for each sampled temporal model T l proposed at iteration l of the rj‐McMC, we are
able to easily compute the conditional probability p(Ω|d,T l): the probability distribution of β, μ, and σ for the
given model T l (Equation 20).

Thus, at each iteration, the code proposes a new model depicting constant periods separated by discrete changes in
parameters, which is either accepted or rejected based on the Metropolis‐Hastings criteria. If the proposed model
is accepted, it is added to the ensemble of previously accepted models. As the process continues over many it-
erations, the cumulative effect of all accepted stair‐step changes is built up.

At the completion, the full distribution for β, μ, and σ can therefore be obtained by summing the all the distri-
butions p(Ω|d,T l) for all the sampled models T l ∈ T(c) (Figures 2b and 2c). Although each individual model
shows discrete steps, the time of changes is variable, and the averaging process over many iterations results in a
smoothing effect. The ensemble solution of accepted models creates a composite distribution that more accurately
reflects the information contained in the underlying data. This sampling process results in a final posterior density
where the average varies smoothly. In this way, the mean and the standard deviation for our three parameters can
be obtained as a smooth function of time (see Figure 2c).

2.3. Synthetic Test

2.3.1. Generated Data

We simulate a synthetic earthquake catalog of 5,683 independent events following frequency‐magnitude dis-
tributions with some temporal variations in bvalue and detectability. In this section, for demonstration purposes, we
only consider a data set with abrupt and discontinuous changes for the three parameters of the frequency‐
magnitude distribution which is more adapted to our “step‐changes” parametrization. More precisely, the
earthquake catalog is generated as follows:

• A discontinuity corresponds to the time when at least one of the three parameters of the frequency‐magnitude
distribution changes. We generate a catalog with six temporal discontinuities that we aim to recover.
Therefore, the catalog is the combination of seven temporal subsets.

• Within each temporal sub‐dataset, earthquake magnitudes are drawn from a Gutenberg‐Richter law charac-
terized by a bvalue specified in Table 1.

• Earthquake occurrence is generated according to a basic epidemic‐type aftershock sequence (ETAS)
(Ogata, 1988) with a constant background rate. Each generated earthquake can be followed by aftershocks
according to the aftershock productivity law (Utsu, 1972). Aftershock occurrence time is modeled by the
Omori power law (Omori, 1894). The ETAS parametrization does not vary temporally. In particular, to
characterize the temporal occurrence of aftershocks, we keep a constant petas value of 1.1 and an αetas value of
1.5. For now, we do not generate the detectability variations coming from the short‐term incompleteness (e.g.,
Helmstetter et al., 2006; Ogata & Katsura, 2006) following large earthquakes.

• We thin this ETAS earthquake catalog using the error detection law. Each event has a probability of being
detected and preserved, or undetected and removed, according to its magnitude and some chosen μ and σ (see
Equation 9). Each pair of μ and σ for each of the seven sub‐datasets are specified in Table 1.

.

The data set is made to test the capabilities of our algorithm and approach. To that aim, there are some periods
where bvalue remains constant while the detectability varies (S2 and S3) (Figure 4). We also include small
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detectability or bvalue changes (S5 and S6). For the period with the highest
detectability (S3), earthquakes with magnitudes as low as 0.01 are detected.
Considering a definition ofMc = μ + σ, the completeness magnitude varies
at most between subsets from 1.7 to 0.65.

2.3.2. Results and Comparison

Let us start by applying classical approaches on this synthetic data set.
Ignoring temporal variations of bvalue and considering a constant complete-
ness magnitude of 1.8, the frequentist approach (Aki, 1965) gives the
maximum likelihood estimate over the complete catalog of
bvalue = 0.81 ± 0.03. This illustrates how the uncertainties can be under-

estimated when using the classical approach without considering temporal variations. However, if we assume that
we know the position of temporal discontinuities and that the completeness magnitude is correctly estimated
using Mtrue

ci = μi + σi for (i = 0,… ,6), the true bvalue can be recovered by the maximum likelihood estimate
within its uncertainties. However, for applications to real earthquake catalogs, the temporal discontinuities are
mostly unknown or at least ambiguous. Classical approaches therefore deal with temporal variations by esti-
mating the bvalue over a moving window.

Using a moving‐window of 600 events and a constant completeness magnitude, Figure 5a shows that depending
on the temporal sub‐dataset the maximum likelihood estimate tends to under‐estimate or over‐estimate the bvalue
depending on the choice ofMc and the true detectability. In particular for (S2) with a low detectability, the choice
of the completeness magnitude has a major influence on the results. This large variability of solutions can be
partly corrected by the use of the b‐positive approach (Van der Elst, 2021) (Figure 5b). The b‐positive approach
(Van der Elst, 2021) uses moving‐windows to infer temporal variations of bvalue without being biased by the
continuous decay of completeness for mainshock‐aftershocks sequences. However, we show, that for discon-
tinuous changes of completeness, the b‐positive depends on the choice of the difference threshold dMc. Thus, dMc
also needs to be adapted over time to correct for large variations in ‘background’ incompleteness, such as those
between (S2) and (S3), to mitigate the risk of over‐interpreting some temporal variations. This observation has
also been highlighted by several recent studies (e.g., Lippiello & Petrillo, 2024).

These methods can be very efficient and fast but they use truncated data sets, which can result in bvalue estimations
based on very few events for periods with low detectability. With our new transdimensional approach, bvalue and
completeness are jointly inferred together with a probabilistic estimate of temporal changes from the entire
data set.

We applied our method to the synthetic data set and conducted 50 parallel rj‐McMC explorations with different
initializations for T in order to efficiently explore the model space. We present the results derived from the final

Table 1
Set of Chosen Values for bvalue, μ and σ for Each of the 7 Data Subsets. Nevents
Corresponds to the Number of Earthquakes Detected of Each Sub‐Set (After
the Detection Thinning)

Subset S0 S1 S2 S3 S4 S5 S6

Nevents 514 647 261 2,538 727 672 324

bvalue 0.70 1.10 1.00 1.00 0.80 0.70 0.65

μ 0.80 0.80 1.50 0.50 0.75 0.90 0.90

σ 0.35 0.30 0.20 0.15 0.30 0.40 0.15

Figure 4. (a) Temporal distribution of magnitudes over time for the 7 data subsets. Each subset is represented with a different
color. Gray vertical lines are the positions of the fixed temporal discontinuities. (b) Frequency‐magnitude distribution of each
synthetic data subset in logarithmic scale, respective colors from (a) are conserved. The slopes are related to the
respective bvalue.
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stack of posterior densities coming from the 50 runs, each encompassing 5,000 proposed models of temporal
discontinuities (Figures 5c–5f). In total, 250,000 temporal models were proposed out of which approximately
41,800 were accepted upon completion. The six temporal discontinuities are well retrieved and clearly identified
(Figure 5c). Analysis of the number of discontinuities at each step indicates that the algorithm converged toward
the correct value in less than 2,000 iterations, even though all initialisations began with random values of k
ranging from 4 to 12. A burn‐in period of 1,000 iterations has been set to disregard initial iterations. The
maximum number of discontinuities allowed was set to 40 and did not affect the random‐walk. For the 50 runs, the
mean acceptance rate is around 30% for the move cases and 10% for the birth and death cases. These values are
consistent with acceptance values obtained by other applications of rj‐McMC algorithm (Gallagher et al., 2009).

Our approach allows to display the temporal evolution of the bvalue of the Gutenberg‐Richter law along with the
two parameters describing the detectability (Figures 5d–5f). At each time‐bin over a 100 grid, the full probability
distribution of bvalue is the sum of all the marginal densities that have been accepted. For the three parameters, the
probability distribution comprises the true value even for periods with low detectability (Figures 5d–5f). Spe-
cifically, for period S2 containing 261 events, the bvalue estimated by the transdimensional approach between 1.05
and 1.0 is close to the true value 1.0 with a 68% confidence interval of ±0.1. As this period involves the fewest
events, the relative probability is the lowest. This confidence intervals narrows to ±0.02 for the period S3
containing 2,538 events. Despite a large increase of detectability between these two periods, the bvalue remains
stable. We demonstrate that the transdimensional framework retrieves the true values of the three parameters
governing the frequency‐magnitude distribution of earthquakes over time for a synthetic case. This approach
gives larger uncertainties compared to those proposed by classical methods, primarily because it accounts, in

Figure 5. (a) Temporal variations of bvalue using the classical maximum likelihood estimate (Aki, 1965; Utsu, 1966). The continuous curves are the moving‐window
estimate for a window size of 600 events with different choices of completeness magnitudes depending on the color‐scale. (b) Temporal variations of bvalue using the b‐
positive approach (Van der Elst, 2021). The continuous curves are the moving‐window estimate for a window size of 600 events with different choices of difference
threshold dMc depending on the color‐scale. (c) Probability of temporal discontinuities at the completion of the rj‐McMC algorithm and the temporal distribution of
magnitudes in the background (d) Marginal density distribution of bvalue over time (e) Marginal density distribution of μ over time (f) Marginal density distribution of σ over
time. For each subplot, the red horizontal lines represent the true parameter values fixed for each data subset, while the blue vertical lines denote the true values of temporal
discontinuities as per Table 1.
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addition to the number of earthquakes used, for existing correlations between parameters that classical approaches
fail to resolve.

Here we have shown the efficiency of the b‐Bayesian code to effectively resolve stair‐step variations from a
synthetic catalog. In the case of a continuous evolution of bvalue or detectability as in the STAI model (Helmstetter
et al., 2006), the b‐Bayesian approach will model the continuous evolution by creating and moving discontinuities
in the continuous period to represent all the stair‐steps that fit the evolution. In this way, the final posterior density
function will be a composite of all these accepted stair‐step models, resulting in a smooth temporal evolution of
the marginal density. An example of such continuous evolution retrieved by the b‐Bayesian code can be found in
Supporting Information S1 and in the next section on a real earthquake data set. For a more accurate description of
a continuous evolution, one perspective could be to change the current parameterization by modeling linear trends
for β, μ or σ, between each step. Note also that a more physical parameterization could be used based on the STAI
model. Such a parameterization would increase the computational time without any evidence that the results
would be significantly more accurate.

3. Application to a Real Earthquake Catalog
A significant challenge is thus to select a region where the bvalue and the completeness are homogeneous, and the
Gutenberg‐Richter law is valid for the chosen sub‐dataset of earthquakes. The transdimensional approach pre-
sented here addresses this issue in time, yet the selection of a catalog with spatially homogeneous bvalue remains
crucial to better understand the physical meaning of bvalue temporal variations.

Another challenge addressed by the transdimensional approach is the temporal variations in completeness
magnitude, influenced by mainshock‐aftershock sequences and seasonal variations due to anthropogenic or
meteorological factors (e.g. Iwata, 2013). Here, we choose an earthquake catalog with expected variations in
completeness to evaluate the approach's efficiency and compare results with other methods.

3.1. Data: Far‐Western Nepal Seismicity

Our first application of the transdimensional approach to investigate bvalue variations focus on the temporal
evolution of seismicity in a very seismically active region of Nepal. We use the earthquake data collected during
two years by the Himalayan Karnali Network (HiKNet), the first dense seismological network of 15 temporary
stations deployed in far‐western Nepal. This earthquake catalog is derived from two studies (Hoste‐Colomer
et al., 2018; Laporte et al., 2021) which focuses on the spatio‐temporal analysis for seismotectonic interpretation.

In Nepal, the main feature of seismicity is a belt of intense microseismicity which is located at depth on the locked
portion of the Main Himalayan Thrust (MHT), (e.g., Ader et al., 2012). The MHT is the main active thrust fault
which accommodates most of the shortening between the Indian plate and the Tibetan plateau. The seismicity is
interpreted as resulting from stress build‐up on the locked portion of the MHT. It exhibits a multimodal behavior,
generating intermediate earthquakes (M> 5) that partially rupture the MHT, as well as large (M> 7) and great
earthquakes (M> 8) that may rupture several lateral segments of the MHT, sometimes up to the surface (Dal Zilio
et al., 2019).

In the area of interest in this paper, the most recent great earthquake occurred in 1505 A.D. according to historical
records supported by paleoseismological evidence (Hossler et al., 2016; Riesner et al., 2021).

Between December 2014 and September 2016, the temporary experiment recorded almost 4,500 earthquakes in
this region. The seismicity is structured into three seismic belts: one large belt in the westernmost part (BAJ,
Bajhang region) and two separate belts in the east (SK and NK, South and North Karnali sectors) (Figure 6). Each
belt contains several seismic clusters of different size and spatio‐temporal behavior. Most of them are located at
mid‐crustal depths (15 − 20km) close to mid‐crustal structures such as the toe of mid‐crustal ramps, which
accumulate most of the interseismic strain on the fault. The geometry of the MHT fault is considered to be the
primary factor influencing microseismicity. The focal mechanisms of the largest earthquakes are consistent with
thrust faulting.

In Nepal, the monsoon season typically spans from early June to September, peaking in July and August. During
this period, some small seasonal strain and stress variations have been evidenced as well as a correlation between
such stress rate and the seismicity rate (Bettinelli et al., 2008; Bollinger et al., 2007). However, during the same
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period, the high‐frequency seismic noise increases, leading to fewer detected earthquakes. Additionally, in 2015,
9 out of 24 instruments were successively disconnected by storms. These typical monsoon periods are highlighted
in blue in Figure 7a, along with the availability of the 24 instruments throughout the experiment.

Seasonal variations in the bvalue could represent such modulation of seismicity due to seasonal stress perturba-
tions. Given the challenges posed by temporal variations in detectability due to station losses and monsoon
periods, classical approaches cannot adequately address this issue. We chose this data set to study the potential
temporal variations in bvalue using the transdimensional approach, which accounts for uncertainties arising from
detectability. To ensure spatial homogeneity of bvalue, we focused on a geographical region of 94 km by 57 km,
corresponding to the seismicity of the western belt, which is the most instrumented. 2,593 earthquakes were
recorded within this specific region. The cumulative number of earthquakes reveals distinct periods of seismic
activity (see Figure 7a). Using the frequentist approach of Aki for a completeness magnitude of 1.5 on the full

Figure 6. Far‐western Nepal seismicity recorded during 2 years by the temporary seismological experiment of the
Himalayan‐Karnali network (HiKNet) (white triangles) and the permanent seismological network of the National
Earthquake Monitoring Research Center (black triangles). We use the earthquake catalog and focal mechanism from Laporte
et al. (2021). NK: North Karnali sector, SK: South Karnali sector. In this study, we focus our analysis on the geographical
subset represented by the inner red rectangle comprising 2,593 events: the Bajhang region (BAJ).

Figure 7. (a) Temporal distribution of magnitudes during 2 years of the HiKNet experiment in the Bajhang region. The color
scale is the same as Figure 6. The red curve is the temporal evolution of the cumulative number of events. Horizontal lines
correspond to station availability. Blue shades are the usual monsoon periods in Nepal. (b) Frequency‐magnitude distribution
in normal (blue histograms) and logarithmic (orange curve) scale. The two histograms are histograms for bins of 0.2 and 0.1
in magnitude, respectively.
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time period, we get a bvalue of 0.82 ± 0.08 (Figure 7b) consistent with the bvalueobtained in far‐western Nepal and
more generally in Central and Eastern Nepal (e.g., Laporte et al., 2021). This low bvalue is also consistent with the
thrust‐type faulting style (e.g., Schorlemmer et al., 2005).

3.2. Results

For this real application, we configure the rj‐McMC algorithm to conduct 15,000 iterations for each individual
run. However, as for the synthetic case, we initiate 50 parallel runs, totaling 750,000 models tested starting from
distinct random seeds. For each of them, we burn 4,000 iterations and thin the chain by keeping only 1 out of 5
accepted models.

The algorithm converges toward 9 temporal discontinuities (defined as being over a probability of 15%) after
5,000 iterations (Figure 8a). The total acceptance rate is 23% and is above 20% for the three case scenarios births/
deaths/moves.

Moreover, comparing the position of these discontinuities with the magnitude distribution of the seismicity, we
can see that these nine discontinuities are coincident with some specific time periods of the data set. We interpret
and discuss each of them with respect to the stacked marginal densities of probability for bvalue, μ and σ (Figure 8).

• S0 (15/10/2014–27/01/2015) corresponds to the first three months of the HiKNet temporary seismological
experiment. During that time the bvalue and the two detectability parameters μ and σ are constant and equal to
0.79 ± 0.06, 0.55 ± 0.07 and 0.24 ± 0.04, respectively.

• S1 (27/01/2015–19/04/2015) The January 2015 discontinuity follows the occurrence of a seismic crisis after a
MLv 4.0 earthquake on 22 January 2015, located at the base of the mid‐crustal ramp of the MHT and followed
by an increased seismic rate of about 300 events occurring in 9 days (Hoste‐Colomer et al., 2018; Laporte
et al., 2021). For this seismic crisis, characterized as a large seismic swarm by Hoste‐Colomer et al. (2018), the
bvalue and the two detectability parameters increase suddenly and then return within the uncertainties of their
previous value: 0.82 ± 0.07, 0.49 ± 0.07 and 0.21 ± 0.05.

• S2 (19/04/2015–11/05/2015) April 2015 corresponds to the loss of three stations (ML04, SJ26 and GJRN)
(Figure 8c), two of which were located in the considered region (Figure 6). The confidence interval for each

Figure 8. (a) Probability of temporal discontinuities at the completion of the rj‐McMC algorithm and the temporal
distribution of magnitudes in the background. The color‐scale is the same as Figure 7. Here, a discontinuity is defined by the
15% probability threshold. (b) Marginal density distribution of bvalue over time (c) Marginal density distribution of μ over
time. Horizontal lines are the stations availability in red for the permanent network and blue for the temporary network.
(d) Marginal density distribution of σ over time For (b), (c). and (d), the thin red dashed line is the mean probability for the
respective marginal density distribution. The thin black lines are the ±1σ uncertainty. The blue vertical dashed lines are the
position to the solution of temporal discontinuities according to (a).
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parameter becomes wider, corresponding to fewer events detected. Only μ and σ show a clear discontinuous
change. Specifically, in April 2015, μ increases from 0.49 ± 0.07 to 1.24 ± 0.27 and σ from 0.21 ± 0.05 to
0.33 ± 0.09. During this month the parameter μ is not constant and seems to increase. The mean of the
marginal density distribution of bvalue increases from 0.82 to 0.94 with twice the uncertainties of ±0.2. Given
the large uncertainties, such an increase in bvalue is not statistically significant…

• S3 (11/05/2015–01/09/2015) May 2015 corresponds to the loss of two stations in the center of the region
(WA07 and CH06) (Figure 8). In the region, only 5 out of 9 stations are available during this period. Between
June and September the monsoon occurs and the detectability decreases progressively, as shown by the
progressive increase of the μ parameter from 1.30 ± 0.25 to 1.55 ± 0.23. The σ parameter is not affected as
much as μ and remains approximately constant. The mean bvalue stays within the confidence interval of the
previous periods, 0.84 ± 0.17. Similar to period S2, we cannot statistically resolve the bvalue variations during
the monsoon period due to the large uncertainties resulting from poor detectability.

• S4 (01/09/2015–12/10/2015) In September 2015 the monsoon stopped but 6 stations are still unavailable. At
that time, we notice a brutal improvement in the detectability: μ decreases from 1.55 ± 0.23 to 0.94 ± 0.21
and σ from 0.33 ± 0.09 to 0.26 ± 0.09. However, the detectability has not returned to its pre‐monsoon value
and the confidence interval of the bvalue remains as large 0.84 ± 0.17.

• S5 (12/10/2015–04/06/2016) In October 2015, a field mission recovers the 6 missing stations. Both the bvalue
and the detectability parameters return to the pre‐monsoon periods S1 and S2, 0.50 ± (0.04min/0.13max)
and 0.26 ± (0.02min/0.09max), respectively. This long period shows a stable frequency‐magnitude distri-
bution of seismicity for 8 months until early June 2016. The bvalue remains constant around 0.82 ± 0.13 during
this period, with a confidence interval that narrows to ±0.05 at the end of December 2015.

• S6 (04/06/2016–01/07/2016) This period corresponds to the first days of the expected monsoon period in
2016, μ increases significantly (0.70 ± 0.1) and σ decreases (0.18 ± 0.05). The density probability of bvalue
decreases from 0.82 ± 0.13 to 0.69 ± 0.08, which is the most significant decrease of the 2 years. Meanwhile,
this period includes the onset of the second largest seismic crisis ever recorded in this region. On June 29, a
MLv4.8 earthquake occurred and was followed by several aftershocks, including twoMLv > 4 earthquakes. The
last largest aftershock of MLv4.1 occurred on July 2 (00h23).

• S7 (01/07/2016–24/07/2016) This period begins during the 29th of June crisis that lasted 12 days. At the same
time, a station (KS11) 50 km away from the area of interest interrupts its recording, making it difficult to trace
the possible origin of the discontinuity. The μ parameter increases sharply (0.94 ± 0.15) and σ slightly in-
creases (0.23 ± 0.05) The bvalue seems to comes back to its probably constant value of 0.81 ± 0.12 (S1,S2,
S3,S4,S5).

• S8 (24/07/2016–13/09/2016) Another station from the area of interest becomes unavailable (CH06) and the
confidence intervals become wider. bvalue and σ are constant during that period and approximately equal to the
mean value they had during the 2 years around 0.8 and 0.25 for bvalue and σ respectively. The mean detect-
ability μ seems to increase slightly to reach 1.00 ± 0.15. This increase is supported by the simultaneous
widening of the confidence intervals, which could be due to fewer events being detected during the monsoon.
Detectability is not as bad as during the 2015 monsoon, as only 2 stations stopped recording.

• S9 (13/09/2016–25/09/2016) The last two weeks of the HiKNet temporary experiment. The μ parameter
decreases with the end of the monsoon period but σ increases probably because less events are picked.The
bvalue remains constant.

Looking back at these results, our transdimensional inversion bvalue and detectability (Figure 8) shows that the
potential temporal variations of the bvalue that may arise from the stress‐loading accompanying monsoon is not
fully resolved due to the high detectability variations during the summers of 2015 and 2016 in far western Nepal.
However, during the 2 years of the experiment, and especially outside of the monsoon season, the transdimen-
sional approach identifies a constant bvalue around 0.8 ± 0.1, except for a short period preceding the monsoon but
which also includes a seismic crisis (S6). The origin of this very low bvalue (0.6) cannot be determined based on
those results. However, such a low bvalue (0.8) is coherent with previous studies for the same data set (Hoste‐
Colomer et al., 2018; Laporte et al., 2021) and more globally is coherent with the overall seismotectonic context in
a thrust regime with large interseismic accumulation (Schorlemmer et al., 2005). The b‐Bayesian approach re-
covers as well the large variations of background detectability which can be explained by the loss of stations
during summer 2015 and by the higher seismic noise during the monsoon periods. In particular, the μ parameter
from the detectability function is the most sensitive to detectability changes and can be used as a proxy for
deciphering detectability variations. This additional information, which is not given by traditional approaches,
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can be very useful for the characterization of the efficiency of a seismic network over time. Moreover, these large
variations of detectability are taken into account in the Bayesian estimation of the bvalue and act in the spread of its
uncertainties along time. When all stations of the temporary network were available, the 1σ uncertainty of the
bvalue is reduced to ±0.05. The widening of the posterior density function during the monsoon periods shows that
during these periods the information contained in this earthquake catalog is not good enough to decipher some
seasonal variations of the bvalue even though it might exists. A much longer data set over several years, with fewer
stations shut down during the monsoons, could help provide a more detailed answer on such seasonal modula-
tions. Outside the scope of this study, as the temporary network recorded data between 2014 and 2016, this
particular sector of far‐western Nepal has experienced 5 moderate (ML > 5) damaging earthquakes since 2022,
while the temporary experiment recorded none in two years.

4. Discussion and Perspectives
4.1. Comparison Between Classical Approaches

Most of the time, temporal variations in bvalue have been studied by applying the maximum likelihood approach
(Aki, 1965; Utsu, 1966; Y. Shi & Bolt, 1982) over sliding time windows (e.g., Cao & Gao, 2002; Gulia &
Wiemer, 2019; Nanjo et al., 2012; Nuannin et al., 2005). These techniques are dependent on the accuracy of the
estimation of the time variations of the completeness magnitude (e.g., Helmstetter et al., 2006; Woessner &
Wiemer, 2005) (Figure 9a). More recently, the b‐positive approach introduced by Van der Elst (2021) has been
shown to be insensitive to the short‐term incompleteness coming from mainshock‐aftershocks sequences. Both
approaches are very efficient and do not require any prior information on the bvalue but they use a small part of the
data set only. The uncertainty in bvalue is often estimated using theoretical formulas: from Aki (1965),Utsu (1966)
for Aki's approach or Tinti and Gasperini (2024)for the b‐positive. These uncertainties are computed within the
sliding window. Importantly, this uncertainty is consistently estimated independently of the uncertainty associ-
ated with the completeness magnitude nor their correlation.

Comparing the outcomes derived from traditional and b‐positive approaches with those obtained using our b‐
Bayesian method on the earthquake catalog of far‐western Nepal reveals intrinsic differences among these
methodologies (Figure 9). Notably, both approaches exhibit sensitivity to the selection of the magnitude threshold
(Mc or dMc), whereas the b‐Bayesian method effectively captures the uncertainty arising from fluctuations in
detectability. Our findings indicate that most bvalue variations shown by the moving‐window techniques fall
within the uncertainties accounted for by the b‐Bayesian approach. These small‐scale variations can sometimes
lead to over‐interpretations of the temporal variations in bvalue. In particular, the apparent decrease of the classical
approach and b‐positive method in April 2016 seems to be due to the sliding moving‐window that artificially
creates a decrease when events of July 2016 are beginning to be included.

Despite using a moving‐window of 500 events, this number is significantly reduced by truncation at Mc (up to
only 17% of magnitudes retained for Aki's approach with Mc = 1.6) or by using only positive magnitude dif-
ferences for the b‐positive method (>50%) (Figure 9), while the b‐Bayesian approach does not require any
truncation and uses 100% of all the available data. Moreover, b‐Bayesian proves to be the only tool for deci-
phering jointly the variations in detectability and can be used as a preliminary step before applying classical
approaches to ensure that detectability is adequately considered.

In Table 2, we propose a comparison between the traditional and the b‐positive approaches and the novel b‐
Bayesian approach presented in this paper. Some of the short‐comings of the b‐positive approach, notably the
quantity of data used, have been recently addressed within the novel b‐more‐positive approach which is an
adaptation of the b‐positive (Lippiello & Petrillo, 2024). In conclusion, b‐Bayesian proposes to use all the data
available to invert for the temporal variations of three parameters related to the frequency‐magnitude distribution.
It uses Bayesian inference to capture the full density distributions and does not require any parametrization. This
can be done at the cost of the computational time which is currently being reduced.

4.2. Perspectives

The frequency‐magnitude distribution of earthquakes varies temporally and spatially. At the regional scale, bvalue
is thought to reflect the faulting style and the evolution of the state of stress on the faults (e.g., Gulia &
Wiemer, 2019; Schorlemmer et al., 2005). This is also supported by experimental studies on the micro‐failure
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(e.g., Scholz, 1968; Scholz, 2015). Consequently, numerous studies have focused on monitoring the bvalue at
regional scales to discriminate foreshock and mainshocks sequences (e.g., Gulia et al., 2020; Van der Elst, 2021).
At the local scale, bvalue has also been proven valuable for describing the spatio‐temporal behavior of seismic
clusters (e.g., Farrell et al., 2009; Gui et al., 2020; Herrmann et al., 2022) or characterizing swarm‐like sequences
in relation to fluid‐pressure (e.g., De Barros et al., 2019; Hainzl & Fischer, 2002; Shelly et al., 2016).

In the present case, for studying Nepalese seismicity, the application of the method on a larger interseismic time
scale to see the potential bvalue decrease with increasing stress accumulation or on a post‐seismic sequences such
as the Gorkha earthquake data set could have wider implications for seismic hazard and seismotectonic in-
terpretations. We are now looking forward to applying b‐Bayesian in these different contexts to discuss our results
in comparison with previous studies and infer valuable information for characterizing seismic sequences. Another
perspective of this work would be to change the parameterization of b‐Bayesian to invert for a linear trend for
bvalue instead of constant discrete steps which could be more representative of the continuous temporal evolution
of bvalue. An even more physical parameterization could be considered by modeling the short‐term bvalue changes
according to a theoretical STAI formula for detectability (Helmstetter et al., 2006).

Figure 9. (a) Comparison of the temporal variations of bvalue obtained using the b‐Bayesian approach for far‐western Nepal in
red‐shaded and the frequentist approach from Aki applied on a moving‐window of 500 events as the 4 bold lines, depending
on 4 values of completeness magnitudeMc. (b) Same as (a) but compared to the b‐positive approach with 4 different values
for dMc. For both sub‐figures, the legend gives the mean number of magnitudes kept for the bvalue estimates in the windows,
depending on the magnitude cut‐off.

Table 2
Table of Comparison Between the Two Classical Approaches From Aki (1965), Van der Elst (2021) and b‐Bayesian

Aki (1965) b‐Positive (van der Elst., 2,021) b‐Bayesian (this study)

Inversion param bvalue bvalue bvalue, μ, σ

Approach type MLE MLE Bayesian

Uncertainties estimates MLE MLE Full PDF

Truncation Mc * dMc None

Used Data <40% <50% 100%

Temporal Moving‐window Moving‐window Probabilistic

Comp. Time Immediate ** Immediate ** Long ***

* Arbitrary ** for One Parametrization of Mc/dMc and Choice of Moving‐Window (seconds) *** No Arbitrary Parame-
trization (days).
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The b‐Bayesian method addresses temporal variations in bvalue using Bayesian inference. However, these vari-
ations are generally considered to be secondary compared to spatial variations (Wiemer & Wyss, 1997; Öncel &
Wyss, 2000). Currently, both the b‐Bayesian and classical approaches require a proper selection of a spatial subset
of earthquakes with a homogeneous bvalue, making it challenging to determine the adequacy of the data set.
Similar to the inversion of seismic velocities in tomography (e.g., Bodin & Sambridge, 2009), adapting the
transdimensional approach to account for 2D spatial partitions could enable the capture of both temporal and
spatial variations in the frequency‐magnitude distribution. This is a future development of the method.

Data Availability Statement
The first version of the b‐Bayesian software described in this manuscript will be preserved at (Laporte, 2024). The
seismicity data set from the far west of Nepal used for the real application in the study is available at (Laporte
et al., 2021).
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