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Abstract

The frequency/magnitude distribution of earthquakes can be approximated by an exponential law whose exponent (the so-

called b-value) is routinely used for probabilistic seismic hazard assessment. The b-value is commonly measured using Aki’s

maximum likelihood estimation, although biases can arise from the choice of completeness magnitude (i.e. the magnitude below

which the exponential law is no longer valid). In this work, we introduce the b-Bayesian method, where the full frequency-

magnitude distribution of earthquakes is modelled by the product of an exponential law and a detection law. The detection law

is characterized by two parameters, which we jointly estimate with the b-value within a Bayesian framework. All available data

are used to recover the joint probability distribution. The b-Bayesian approach recovers temporal variations of the b-value and

the detectability using a transdimensional Markov chain Monte Carlo (McMC) algorithm to explore numerous configurations of

their time variations. An application to a seismic catalog of far-western Nepal shows that detectability decreases significantly

during the monsoon period, while the b-value remains stable, albeit with larger uncertainties. This confirms that variations in

the b-value can be estimated independently of variations in detectability (i.e. completeness). Our results are compared with

those obtained using the maximum likelihood estimation, and using the b-positive approach, showing that our method avoids

dependence on arbitrary choices such as window length or completeness thresholds.
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Key Points:6

• The bvalue from the Gutenberg-Richter law is usually inferred by truncating earth-7

quake catalogs above a completeness magnitude. We propose to use all the data8

available and invert conjointly for bvalue and two parameters describing the de-9

tectability.10

• Using a Bayesian framework we retrieve the full posterior density function of bvalue11

with a more realistic evaluation of its uncertainties than classical approaches.12

• b-Bayesian performs a transdimensional inversion to recover the temporal changes13

of the bvalue and detectability.14
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Abstract15

The frequency/magnitude distribution of earthquakes can be approximated by an ex-16

ponential law whose exponent (the so-called bvalue) is routinely used for probabilistic seis-17

mic hazard assessment. The b-value is commonly measured using Aki’s maximum like-18

lihood estimation, although biases can arise from the choice of completeness magnitude19

(i.e. the magnitude below which the exponential law is no longer valid). In this work,20

we introduce the b-Bayesian method, where the full frequency-magnitude distribution21

of earthquakes is modelled by the product of an exponential law and a detection law.22

The detection law is characterized by two parameters, which we jointly estimate with23

the bvalue within a Bayesian framework. All available data are used to recover the joint24

probability distribution. The b-Bayesian approach recovers temporal variations of the25

bvalue and the detectability using a transdimensional Markov chain Monte Carlo (McMC)26

algorithm to explore numerous configurations of their time variations. An application27

to a seismic catalog of far-western Nepal shows that detectability decreases significantly28

during the monsoon period, while the b-value remains stable, albeit with larger uncer-29

tainties. This confirms that variations in the bvalue can be estimated independently of30

variations in detectability (i.e. completeness). Our results are compared with those ob-31

tained using the maximum likelihood estimation, and using the b-positive approach, show-32

ing that our method avoids dependence on arbitrary choices such as window length or33

completeness thresholds.34

1 Introduction35

Classically, the probability density function of an earthquake of magnitude m above36

a magnitude of completeness Mc follows the Gutenberg-Richter law (Aki, 1965):37

p(m) = βe−β(m−Mc) (1)

where β = bvalue×ln(10). The bvalue is the seismic parameter that describes the38

relative number of large magnitude earthquakes versus smaller magnitude earthquakes.39

For global earthquake catalogues, the bvalue is typically close to 1, but has been shown40

to vary in both space and time when focusing on earthquake catalogues for specific seis-41

mogenic regions or time periods (e.g. Wiemer & Wyss, 1997; Ogata & Katsura, 2006).42

With the rapid growth of seismological instruments and recording capabilities, there is43

a need for advanced statistical methods to analyze earthquake catalogs. Here, we anal-44
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yse the distribution of earthquake magnitudes, focusing on the possibility to observe and45

interpret temporal variations in this distribution.46

The Gutenberg-Richter law is widely used as an earthquake recurrence model for47

Probabilistic Seismic Hazard Assessment (PSHA) studies (e.g. Cornell, 1968; Drouet et48

al., 2020). Consequently, the accurate estimation of bvalue and its uncertainties play a49

crucial role in the accuracy and robustness of seismic hazard estimates (e.g. Keller et50

al., 2014; Beauval & Scotti, 2004; Taroni & Akinci, 2020). For accurate hazard assess-51

ment, bvalue biases due to the incompleteness of earthquake catalogues need to be ad-52

dressed (e.g. Weichert, 1980; Plourde, 2023; Dutfoy, 2020; Beauval & Scotti, 2004) as53

well as possible temporal or spatial variations of the bvalue (e.g. Beauval & Scotti, 2003;54

Yin & Jiang, 2023).55

The physical interpretation of these spatio-temporal variations in the frequency-56

magnitude distribution of earthquakes has been a subject of ongoing debate for years57

(e.g. Mogi, 1962; Scholz, 1968; Carter & Berg, 1981; Herrmann et al., 2022). Based on58

observations from laboratory earthquake simulations, which are commonly used as ana-59

logues for studying natural earthquake behaviour, it has been proposed that the bvalue60

is inversely related to the normal and shear stress applied to the fault (Scholz, 1968). At61

the scale of the seismic cycle, which is reproduced in stick-slip experiments with controlled62

stress and friction properties, the bvalue has been observed to decrease linearly with stress63

build-up and to increase abruptly with the stress-drop release during earthquake rup-64

ture (Avlonitis & Papadopoulos, 2014; Goebel et al., 2017; Rivière et al., 2018; Bolton65

et al., 2020). Extending this observation to real earthquake systems is not straightfor-66

ward because real earthquake catalogues contain additional uncertainties and the esti-67

mation of the actual state of the stress field is another inverse problem.68

However, the bvalue is also widely used to characterize real earthquake catalogs. It69

is commonly estimated to characterize earthquake clusters and discriminate between seis-70

mic swarms (e.g. De Barros et al., 2019). Some variations in bvalue have been observed71

for different earthquakes depths or within different stress regimes (Mori & Abercrom-72

bie, 1997; Schorlemmer et al., 2005; Scholz, 2015; Petruccelli et al., 2019; Morales-Yáñez73

et al., 2022). Low bvalue (< 0.8 ), associated to a larger number of larger magnitudes74

earthquakes compared to the normal regime, have been observed for several earthquake75

sequences occurring before a large earthquake rupture (e.g. Nanjo et al., 2012; Chan et76
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al., 2012; H. Shi et al., 2018; Li & Chen, 2021; Van der Elst, 2021; Kwiatek et al., 2023;77

Wetzler et al., 2023). This observation has a major impact for the identification of pre-78

cursory phases before large mainshocks. Recently, bvalue monitoring has been proposed79

to serve as a stress-meter for discrimination of foreshock sequences (e.g. Gulia & Wiemer,80

2019; Ito & Kaneko, 2023). This topic remains under debate due to large uncertainties81

that could arise either from earthquake catalogs or from bvalue estimation approaches82

(e.g. Lombardi, 2021; Spassiani et al., 2023; Yin & Jiang, 2023; Geffers et al., 2022; Go-83

dano et al., 2024).84

The most classical approach for estimating bvalue from a catalog of earthquake mag-85

nitudes is the maximum likelihood estimation of Aki and its generalization (Aki, 1965;86

Utsu, 1966), which depends on the arbitrary choice of the completeness magnitude Mc87

:88

β =
1

m−Mc
(2)

with m the mean of magnitudes greater than Mc. Using this formula, only events with89

magnitudes larger than Mc are used to estimate β.90

Unnoticed changes in completeness over time are the main source of bias when study-91

ing bvalue temporal variations (e.g. Woessner & Wiemer, 2005; Helmstetter et al., 2006;92

Mignan & Woessner, 2012; Lombardi, 2021; Plourde, 2023; Godano et al., 2023) Two93

main sources of incompleteness are usually identified (e.g. Lippiello & Petrillo, 2024) :94

(1) the background incompleteness coming from momentary changes in the detectabil-95

ity of the seismic network, and (2) the short-term aftershock incompleteness (STAI) which96

describes the short but large changes in completeness that occur during mainshock-aftershock97

sequences where large earthquakes mask smaller ones (e.g. Helmstetter et al., 2006; Hainzl98

& Fischer, 2002). The b-positive approach (Van der Elst, 2021) is a variant of Aki’s max-99

imum likelihood approach, using differences in the magnitudes of successive earthquakes100

to propose a moving-window estimate of temporal changes in the bvalue during mainshock-101

aftershock sequences without being biased by STAI.102

β =
1

m′+ − dMc

(3)
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with m′+ the mean of positive magnitudes differences greater than dMc, which is a cho-103

sen value that should be greater than twice the minimum magnitude difference. Based104

on the fact that two consecutive events in a mainshock-aftershock sequence share the same105

completeness, this approach is now frequently used for a more accurate estimation of tem-106

poral variations of bvalue.107

Even though the b-positive approach provides a major advantage in comparison108

to Aki’s classical approach, it still suffers from its dependence on the choice of dMc and109

to the size of the moving-window (e.g. Lippiello & Petrillo, 2024). Furthermore, the bvalue110

estimate is computed on less than half of the available data and uncertainties are usu-111

ally assessed using a bootstrap approach (Van der Elst, 2021).112

In this paper, we introduce the b-Bayesian approach to explore the temporal vari-113

ation of bvalue, while addressing the problems of classical frequentist approaches. We pro-114

pose to invert for bvalue using the entire catalogue, taking into account a detectability115

function. By adopting this approach, our results are independent of the arbitrary choice116

of a completeness magnitude. Instead of traditional methods that compare frequency-117

magnitude distributions over random data subsets or that recover pseudo-continuous tem-118

poral variations using moving time windows, we address temporal variations in bvalue119

and detectability by considering the number and positions of temporal discontinuities120

where bvalue or detectability changes. The inversion of temporal discontinuities is achieved121

using a transdimensional framework.122

Transdimensional inversion is commonly used in seismic tomography to allow the123

data to determine the level of spatial complexity in the recovered tomographic model124

(e.g. Bodin & Sambridge, 2009; Bodin et al., 2012). It has recently been adapted to es-125

timate variations in the bvalue from truncated catalogs along one dimension, such as time126

or depth (Morales-Yáñez et al., 2022). Here, we use transdimensional inversion to re-127

cover one-dimensional partitions of the entire earthquake dataset. A Bayesian framework128

provides a global formulation of the inverse problem and allows for the probabilistic es-129

timation of temporal changes of bvalue, and detectability. The complexity of the model130

does not depend on any arbitrary parameter, but is determined by the complexity of the131

data.132

This paper is organized as follows. First, we describe the novel b-Bayesian approach133

for a time-invariant case, including the assessment of detectability using all available mag-134
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nitude data. We describe how we extend this approach using a transdimensional frame-135

work in order to invert for temporal variations based on the complexity of the data. We136

present the results obtained using a synthetic catalog generated to mimic real-world sce-137

narios. A first application of the b-Bayesian method is presented using a real earthquake138

catalog. We compare the results of b-Bayesian with the two frequentist approaches : the139

maximum likelihood estimate and the b-positive to describe the temporal variation of140

bvalue and the temporal variations of detectability for an earthquake catalog of far-western141

Nepal spanning two years of microseismicity.142

2 Method : A Bayesian framework143

In this study, a dataset is an earthquake catalogue which corresponds to a set of144

N observations of (non-discrete) magnitudes mi (i = 1 . . . N) that we note :145

d = [m1,m2, . . .mN ] (4)

From hereafter, we refer to conditional probabilities using p(a|b). We know from the Gutenberg-146

Richter law (eq.1) that the probability density of observing one earthquake i of magni-147

tude mi ≥ Mc for a given β is :148

p(mi|β) = βe−β(mi−Mc) (5)

and is zero if mi < Mc. Then, assuming that the magnitudes of the seismic events are149

independent, we can write the probability of observing the entire earthquake dataset d150

with mi ≥ Mc, p(d|β), as :151

p(d|β) =
N∏
i=1

p(mi|β) = βNe−βN(mi−Mc) (6)

where mi, is the mean magnitude of events with mi ≥ Mc and Mc, the magni-152

tude of completeness. Note here that the value of β that maximizes (eq.6) is the max-153

imum likelihood solution given by Aki’s formula in (eq.2).154

2.1 The temporally invariant case155

In practise, seismic catalogs are truncated at the completeness magnitude Mc in156

order to avoid biases due to the detection capacity (e.g. Aki, 1965; Utsu, 1966). As a157

result, the classical approach for b-value estimation strongly depends on the choice made158

for Mc. Various methods have been developed for assessing the completeness magnitude159
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(e.g. Ringdal, 1975; Ogata & Katsura, 1993; Woessner & Wiemer, 2005; Mignan & Woess-160

ner, 2012) or to correct the dataset for its temporal variations (e.g. Helmstetter et al.,161

2006; Cao & Gao, 2002; Chan et al., 2012). However, defining such a completeness mag-162

nitude always implies to ignore a significant portion of a dataset that may contain valu-163

able information about the statistics of seismicity. Here instead, we propose to analyse164

the entire dataset by modelling the entire frequency-magnitude distribution of earthquakes.165

To do so, the Gutenberg-Richter law is modulated by a detection law q(m) such that now166

:167

p(mi|β) =
1

K
q(mi)βe

−βmi (7)

where q(m) defines the probability density of detecting an event, and K a constant168

to insure that the probability distribution integrates to one :169 ∫ ∞

Mmin

p(mi|β)dm = 1 (8)

with Mmin the smallest earthquake magnitude in the catalog.170

In this way, the probability of observing an event is the product of the probabil-171

ity of occurrence (given by the Gutenberg Richter law) and the probability of detection172

(given by the detection law q(m) that varies from 0, no detection, to 1, 100% detection).The173

error function has been proposed in the literature to represent the probability of detec-174

tion of an event in the presence of log-normal seismic noise (e.g. Ringdal, 1975; Ogata175

& Katsura, 1993; Daniel et al., 2008). The error function (see Figure 1.A) depends on176

two parameters µ and σ such as :177

q(m) =
1

2
+

1

2
erf

(
m− µ√

2σ

)
(9)

where µ represents 50% of probability of detection for an earthquake of magnitude m =178

µ, and becomes 84% for m = µ+σ. The magnitude of completeness is the equivalent179

of the 84% threshold. This function fits adequately the frequency-magnitude distribu-180

tion for a variety of cases (Ogata & Katsura, 1993; Woessner & Wiemer, 2005).181

From equations (7) and (8), we can write :182

K =

∫ ∞

Mmin

q(m)βe−β(m−Mmin)dm (10)

Fortunately, this integral for the error function q(m) in (eq.9) has a closed form solution183

between Mmin and infinity :184

K = q(Mmin) +
(
1− q(Mmin + βσ2)

)
exp

(
β2σ2

2
− β(µ−Mmin)

)
(11)
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Now assuming that magnitudes are independent, the probability of observing a full185

dataset d is :186

p(d|ω) =
N∏
i=1

p(mi|ω) =
(

β

K

)N N∏
i=1

q(mi)× e−βN(mi−Mmin) (12)

where ω = [β, µ, σ] is our set of three unknown model parameters. Our goal here is to187

estimate these parameters from a set of realizations d. This is an inverse problem that188

can be formulated in a Bayesian framework, where the posterior solution p(ω|d) is the189

product between the model priors and the likelihood function p(d|ω) (eq.12).190

p(ω|d) = p(β, µ, σ)p(d|ω) (13)

Here we set independent uniform prior distributions for the three parameters, partly191

because they are not related to the same physics: bvalue is related to seismicity and µ192

and σ to network detectability. Although we can expect correlations between these pa-193

rameters from the data (i.e. a posteriori), our level of knowledge is independent for each194

parameter. This independence greatly facilitates Bayesian inference. For each param-195

eter, we use a simple uniform prior distribution, independently defined between a fixed196

range of realistic values. The choice of the bounds is guided by the literature and should197

be chosen depending on the seismotectonic context and the mean detectability of the net-198

work. We advise to impose a relatively wide range of values for the bvalue inference, al-199

lowing both high (> 1) and low (< 1) bvalue for an earthquake catalog. In the context200

of geothermal or volcanic activity, this range may be extended to allow larger values (up201

to 2.5) for the bvalue. The choice of bounds for the µ parameter should be guided by the202

level of detectability of the seismic network and the ”expected” variations in complete-203

ness. For a local network (seismicity included within 50 km), which essentially records204

microseismicity, we can set this range of values between 0.5 and 2. In the presence of at205

least one mainshock/aftershock sequence, this range should also be increased. The prior206

distribution on σ can be set between 0.01 and 0.5 and does not need to be adjusted de-207

pending on the context.208

The posterior distribution (eq.13) can be numerically approximated using a clas-209

sical Monte-Carlo approach.210

As an example, we construct a synthetic dataset of 4460 independent magnitudes,211

randomly drawn from a Gutenberg-Richter law characterized by bvalue =
β

log(10) = 0.9212
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and modulated by an error detection function characterized by µ=0.75 and σ=0.34 (see213

Figure 1.A). We then estimate our set of parameters ω = [β, µ, σ] from the catalogue,214

by approximating the posterior distribution p(ω|d) with a standard Monte Carlo scheme215

by randomly sampling the model priors. The resulting 3D posterior density function can216

be projected onto each parameter (Figure 1.B) to derive 1D and 2D marginal distribu-217

tions (Figure 1.C). For example, the marginal distribution for β is simply obtained by218

integrating the posterior over µ, and σ :219

p(β|d) =
∫ ∫

p(β, µ, σ|d) dµ dσ (14)
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Figure 1. (A) [Top] Detection function q(m) associated with the synthetic dataset [Bottom]

Frequency-magnitude distribution of a synthetic catalog with values of bvalue = 0.9, µ = 0.75 and

σ = 0.34. The red dotted line corresponds to the model ω = [0.92, 0.76, 0.35] that best fits the

observations. The yellow area corresponds to the distribution of magnitudes inferior to (µ + σ)

that are usually removed by classical approaches (about 60% of available data). (B) Marginals

distributions of the posterior function: p(bvalue|d), p(µ|d) and p(σ|d) from left to right, respec-

tively. Here, posterior functions are normalized by their maximum. (C) 2D marginal distributions

of the posterior function. True values are represented by the red cross.

Note that the 2D marginals are useful to show the correlations between pairs of pa-220

rameters. Uncertainty estimates of the three parameters can be obtained with the 1σ221

confidence interval.222
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Compared to optimization approaches where only the best fitting (i.e. maximum223

likelihood) ω is obtained, our method provides the 3D posterior density distribution, p(ω|d),224

from which parameter correlations and uncertainties can be estimated. Moreover, the225

dataset is no longer truncated above a completeness magnitude, instead, the full frequency-226

magnitude distribution is now used to jointly invert for bvalue and detectability.227

2.2 Temporal variations of b-value228

2.2.1 A transdimensional parametrization229

Going one step further, we now consider that ω can vary with time and our goal230

is to recover the location of temporal changes. Our three parameters in ω are considered231

constant in periods separated by abrupt changes (see Figure 3). To that aim, temporal232

variations are modeled with a set of discontinuities T :233

T = [T1, T2, . . . Tk] (15)

where, k is the number of temporal discontinuities and Tj (j = 0 . . . k) the times at which234

the frequency-magnitude distribution changes. The unknown models vectors of the time235

varying frequency-magnitude distribution will be denoted :236

Ω = [ω1, ω2, . . . ωk+1] (16)

where ωj = [βj , µj , σj ] is the local model predicting the sub-dataset dj between two dis-237

continuities [Tj−1, Tj ]. Note that T0 = min(tobs) and Tk+1 = max(tobs). The full pos-238

terior solution p(Ω,T|d) describes the joint probability for local models [ω1, ω2, . . . ωk+1]239

predicting events between each temporal discontinuities [T1, T2, . . . Tk] of the temporal240

model, T. Since the dimension of the model varies with the number of discontinuities,241

k, which is unknown, the inverse problem is so-called transdimensional. The posterior242

p(Ω,T|d) does not have an analytical solution but can be sampled with a Monte Carlo243

algorithm. In this work, we propose to isolate the part of the posterior solution that is244

transdimensional (and to sample it with an appropriate algorithm), and to separate it245

from a part where the dimension is fixed.246

That is, the full posterior solution p(Ω,T|d) can be developed as a product of a247

conditional term p(Ω|d,T) and a marginal term p(T|d) :248

p(Ω,T|d) = p(Ω|d,T)× P (T|d) (17)

–10–
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The following sections describe each of these terms in detail and how they can be ap-249

proximated.250

2.2.2 The conditional posterior p(Ω|d,T)251

The conditional term p(Ω|d,T) describes the probability distribution for param-252

eters Ω for a given time partition T (Figure. 2). It can be itself decomposed with the253

Bayes theorem into the product of a likelihood distribution and a prior distribution :254

p(Ω|d,T) = p(d|Ω,T)× p(Ω|T) (18)

Since all magnitudes are independent, the likelihood is the product of likelihoods for ev-
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Figure 2. (A) Initial iteration of the Markov chain : plot of the conditional probability

p(d|bvalue,T), the probability of bvalue for a fixed time model T of dimension k = 4. The 4

black vertical lines are the discontinuities of the proposed time model T. The 3D posterior den-

sity function is computed for each data subset Tj(j = 0 . . . 4). The bold line is the mean posterior

density function of βj over time. Here, the synthetic earthquake dataset has been constructed

to represent 6 discontinuities. The six green vertical dashed lines are the theoretical disconti-

nuities. (B) Iteration 500 of the McMC: preliminary result of the bvalue time variations, sum

of the marginal density functions of the accepted models. The six discontinuities are almost all

retrieved. (C) Final iteration of the Markov Chain : sum of marginal density functions of the

totality of accepted models. The final temporal evolution of bvalue fits the true bvalue of the syn-

thetic dataset which are represented in bold dashed horizontal lines.

255

ery sub-dataset dj given by the temporal model T:256

p(d|Ω,T) =

k+1∏
j=1

p(dj |Ω,T) (19)
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And since the magnitudes of events dj occurring between two discontinuities [Tj−1, Tj ]257

only depend on the local parameters ωj = [βj , µj , σj ], we can write the likelihood :258

p(d|Ω,T) =

k+1∏
j=1

p(dj |ωj ,T). (20)

where p(dj |ωj ,T) is the likelihood of the data within a time period j which is simply259

given by equation (eq.12).260

The prior distribution for Ω given a fixed temporal model T, p(Ω|T) from equa-261

tion (eq.18), is chosen to be the same within each partition p(ωj |T), and simply corre-262

sponds to the uniform prior distribution used in the temporally invariant case (eq. 13).263

Thus, the conditional posterior p(Ω|d,T) is easy to sample as different periods j can be264

independently sampled with the same algorithm described in the previous section and265

used to produce results in Figure 1. Therefore, for any partition of the time T, we know266

how to probabilistically estimate the parameters Ω.267

The question now is to estimate the number and the position of discontinuities T.268

This is given by the marginal posterior p(T|d).269

2.2.3 The marginal posterior p(T|d)270

p(T|d) describes the probability of the time partition T = [T0, T2, . . . Tk] given271

the full dataset of observed magnitudes. It can be obtained by integrating the full pos-272

terior p(Ω,T|d) over the parameters Ω = [ω1, ω2, ..., ωk+1] :273

p(T|d) =
∫
Ω

p(Ω,T|d)dΩ (21)

According to Bayes’ rule, the posterior density function p(Ω,T|d) is proportional to the274

product of the likelihood p(d|Ω, T ) times the joint prior p(Ω,T).275

p(T|d) ∝
∫
Ω

p(d|Ω,T)p(Ω,T)dΩ (22)

The joint prior p(Ω,T) can be decomposed according to the property of joint den-276

sity distributions p(Ω,T) = p(T)× p(Ω|T). Applied to equation (eq.22), we get :277

p(T|d) ∝ p(T)×
∫
Ω

p(d,Ω|T)p(Ω|T)dΩ (23)

with p(T), the prior distribution for the time partitions and p(Ω|T), the prior for278

the models Ω given a fixed temporal model which is also present in the conditional pos-279
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terior (eq.18). The prior p(T) is a joint distribution, where the prior for each disconti-280

nuity Tj is given by a uniform distribution bounded between min(tobs) and max(tobs).281

The prior p(Ω|T) corresponds to the model priors described in the temporally-invariant282

case as described for the section above.283

Considering that the sub-datasets textbfdj of a time model T are independent, and284

since dataset dj only depends on parameters ωj the full posterior can be expressed as285

:286

p(T|d) ∝ p(T)×
k+1∏
j=1

(∫
ωj

p(dj |ωj ,T)p(ωj |T)dωj

)
(24)

where, p(dj |ωj ,T) is the likelihood of observing the subset dj between [Tj , Tj+1] accord-287

ing to the local model ωj and can be estimated using equation (eq.12) obtained in the288

time-invariant case.289

These integrals can be estimated using importance sampling. That is, for a large290

number of realizations xi, i = (1, . . . , N), randomly drawn from a distribution p(x) :291 ∫
p(x)f(x)dx ≈ 1

N
×

N∑
i=1

f(xi) (25)

Applied to (eq.25), we have:292

p(T|d) ∝ p(T)×
(

1

Nω

)(k+1) k∏
j=0

(
Nω∑
i=1

p(dj |ωj(i) ,T)

)
(26)

where for each period j, ωj(i) = [βj , µj , σj ](i) for i = (1, . . . , Nω) are a set of realiza-293

tions randomly drawn from the uniform prior distributions p(ωj |T).294

From equation (eq.26) we see that the marginal posterior is proportional to the prod-295

uct of the prior at temporal discontinuities p(T) and the product of the mean likelihoods296

p(dj |ωj(i) ,T), computed over Nw realisations of the model priors, between each tempo-297

ral discontinuity. In this way, adding an extra discontinuity will be valuable only if it suf-298

ficiently increases the local likelihood p(dj |wj(i) ,T) to counterbalance this first effect.299

Therefore, this methodology based on a Bayesian framework inherently follows the300

principle of parsimony, finding a balance between finding a simple model with a low num-301

ber of temporal discontinuities, k, and maximizing the overall likelihood p(d|Ω,T).302

2.2.4 The reversible-jump Markov-chain Monte-Carlo algorithm (rj-McMC)303

The marginal posterior p(T|d) can be numerically approximated with equation (eq.26)304

but only for a given partition T. One way to estimate the full distribution p(T|d) is through305
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a Monte Carlo exploration over the space of temporal discontinuities T. The solution306

is then a large ensemble of partition vectors Tl(l = 1 . . . Nl), with Nl the number of307

realizations Tl, whose distribution approximates the target solution p(T|d).308

As the dimension of T varies with the number of discontinuities k, p(T|d) is a trans-309

dimensional function and cannot be explored using a standard Metropolis algorithm (Metropolis310

et al., 1953; Hastings, 1970). One of the most popular technique for exploring a trans-311

dimensional posterior is the rj-McMC method (e.g. Green, 1995; Sambridge et al., 2006,312

2013) and more specifically the birth-death McMC algorithm (e.g. Geyer & Møller, 1994).313

The rj-McMC algorithm, used in many geophysical inverse problems (e.g. Gallagher et314

al., 2009, 2011; Bodin et al., 2012), allows both the model parameters and the model di-315

mension (i.e. the number of parameters) to be inferred. The rj-McMC follows the gen-316

eral principles of the McMC approach by generating samples from the target distribu-317

tion. A Markov chain follows a random walk, where at each step, a proposed model T(p)
318

is generated by randomly modifying a current model T(c) (Figure 3). This proposed model319

is then either accepted (and replaces the current model) or rejected. In this way, each320

step of the rj-McMC is a part of a chain converging to the target distribution.321

The convergence is considered sufficient by monitoring the evolution of the num-322

ber of discontinuities towards a stable value and when the rate of accepted models falls323

in the range of 20% to 40%. Details about the algorithm are given in Appendix. We also324

refer the reader to (Bodin et al., 2012) for further details.325

2.2.5 Appraising the full posterior distribution p(Ω,T|d)326

As a reminder, the solution to our inverse problem is the full posterior solution p(Ω,T|d)327

that describes the temporal changes of β, µ, and σ. As shown in equation (eq.17), this328

posterior can be written as the product of the marginal distribution p(T|d) describing329

the probability of temporal changes and a conditional distribution p(Ω|T,d) for the pa-330

rameters of the frequency-magnitude distribution, given a set of temporal changes.331

By decomposing in such a way the posterior distribution into a conditional and a332

marginal distribution, the Metropolis-Hastings rule is simplified by only simulating a trans-333

dimensional temporal point process for vector T (e.g. Geyer & Møller, 1994; Green, 1995).334

With the rj-McMC algorithm, we have a numerical way to approximate the marginal prob-335

ability distribution about the number and position of temporal changes p(T|d) (eq.26).336
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Figure 3. (Top)Left, P (β|Tl−1,d) over the 5 temporal segments (k = 4) of the proposed

temporal model Tl−1 for proposition l − 1 of the rj-McMC. On the right, the mean likelihood

over the 5 temporal segments for the three marginals posterior p(β|Tl−1,d), P (µ|Tl−1,d) and

P (σ|Tl−1,d). (Bottom) New proposal model Tl in case of a death proposition of the rj-McMC.

The two figures are the same as above : P (β|Tl,d) and the marginals computed for the proposed

temporal model with a lower dimension (k=3).

In addition, for each sampled temporal model Tl proposed at iteration l of the rj-McMC,337

we are able to easily compute the conditional probability p(Ω|d,Tl): the probability dis-338

tribution of β, µ, and σ for the given model Tl (eq. 20).339

At the completion, the full distribution for β, µ, and σ can therefore be obtained340

by summing the all the distributions p(Ω|d,Tl) for all the sampled models Tl ∈ T (c)
341

(Figure 2.B,C). In practice, at each time-bin over an arbitrarily fine grid, the full prob-342

ability distribution of β is the sum of all the marginal densities at this time over the en-343

semble solution for T(Figure 2.B,C). In this way, the mean and the standard deviation344

for our three parameters can be obtained as a smooth function of time (see Figure 2.C).345

2.3 Synthetic test346

2.3.1 Generated Data347

We simulate a synthetic earthquake catalog of 5683 independent events following348

frequency-magnitude distributions as realistic as possible with some temporal variations349
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in bvalue and detectability. In this section, we only consider a dataset with abrupt and350

discontinuous changes in the three parameters of the frequency-magnitude distribution.351

More precisely, the earthquake catalog is generated as follows :352

• A discontinuity corresponds to the time when at least one of the three parame-353

ters of the frequency-magnitude distribution changes. We generate a catalogue with354

six temporal discontinuities that we aim to recover. Therefore, the catalog is the355

combination of seven temporal subsets.356

• Within each temporal sub-dataset, earthquake magnitudes are drawn from a Gutenberg-357

Richter law characterized by a bvalue specified in the Table 1.358

• Earthquake occurrence is generated according to a basic epidemic-type aftershock359

sequence (Ogata, 1988) with a constant background rate. Each generated earth-360

quake can be followed by aftershocks according to the aftershock productivity law361

(Utsu, 1972). Aftershock occurrence time is modelled by the Omori power law (Omori,362

1894). The ETAS parametrization does not vary temporally. In particular, to char-363

acterise the temporal occurrence of aftershocks, we keep a constant petas value of364

1.1 and an αetas value of 1.5. For now, we do not generate the detectability vari-365

ations coming from the short-term incompleteness (e.g. Ogata & Katsura, 2006;366

Helmstetter et al., 2006) following large earthquakes.367

• We thin this ETAS earthquake catalog using the error detection law. Each event368

has a probability of being detected and preserved, or undetected and removed, ac-369

cording to its magnitude and some chosen µ and σ (see eq.9). Each pair of µ and370

σ for each of the seven sub-datasets are specified in the Table 1.371

The dataset is made to test the capabilities of our algorithm and approach. To that372

aim, there are some periods where bvalue remains constant while the detectability varies373

(S2 and S3) (Figure 4). We also include small detectability or bvalue changes (ex:S5 and374

S6). For the period with the highest detectability (S3), earthquakes with magnitudes as375

low as 0.01 are detected. Considering a definition of Mc = µ+σ, the completeness mag-376

nitude varies at most between subsets from 1.7 to 0.65.377

378
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Figure 4. (A) Temporal distribution of magnitudes over time for the 7 data subsets. Each

subset is represented with a different color. Grey vertical lines are the positions of the fixed

temporal discontinuities. (B) Frequency-magnitude distribution of each synthetic data subset in

logarithmic scale, respective colors from (A) are conserved. The slopes are related to the respec-

tive bvalue.

Subset S0 S1 S2 S3 S4 S5 S6

Nevents 514 647 261 2538 727 672 324

bvalue 0.70 1.10 1.00 1.00 0.80 0.70 0.65

µ 0.80 0.80 1.50 0.50 0.75 0.90 0.90

σ 0.35 0.30 0.20 0.15 0.30 0.40 0.15

Table 1. Set of chosen values for bvalue, µ and σ for each of the 7 data subsets. Nevents corre-

sponds to the number of earthquakes detected of each sub-set (after the detection thinning).

2.3.2 Results and comparison379

Let us start by applying classical approaches on this synthetic dataset. Ignoring380

temporal variations of bvalue and considering a constant completeness magnitude of 1.8,381

the frequentist approach (Aki, 1965) gives the maximum likelihood estimate over the com-382

plete catalogue of bvalue = 0.81 ± 0.03. This illustrates how the uncertainties can be383

underestimated when using the classical approach without considering temporal varia-384

tions. However, if we assume that we know the position of temporal discontinuities and385

that the completeness magnitude is correctly estimated using M true
ci = µi+σi for (i =386

0, . . . , 6), the true bvalue can be recovered by the maximum likelihood estimate within387

its uncertainties. However, for applications to real earthquake catalogues, the temporal388
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discontinuities are mostly unknown or at least ambiguous. Classical approaches there-389

fore deal with temporal variations by estimating the b-value over a moving window.390

Using a moving-window of 600 events and a constant completeness magnitude, Fig-391

ure (5.A) shows that depending on the temporal sub-dataset the maximum likelihood392

estimate tends to under-estimate or over-estimate the bvalue depending on the choice of393

Mc and the true detectability. In particular for (S2) with a low detectability, the choice394

of the completeness magnitude has a major influence on the results. This large variabil-395
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Figure 5. (A)Temporal variations of bvalue using the classical maximum likelihood estimate

(Aki, 1965; Utsu, 1966). The continuous curves are the moving-window estimate for a window

size of 600 events with different choices of completeness magnitudes depending on the color-scale.

(B) Temporal variations of bvalue using the b-positive approach (Van der Elst, 2021). The con-

tinuous curves are the moving-window estimate for a window size of 600 events with different

choices of difference threshold dMc depending on the color-scale. (C) Probability of temporal

discontinuities at the completion of the rj-McMC algorithm and the temporal distribution of

magnitudes in the background (D) Marginal density distribution of bvalue over time (E) Marginal

density distribution of µ over time (F) Marginal density distribution of σ over time. For each

subplot, the red horizontal lines represent the true parameter values fixed for each data subset,

while the blue vertical lines denote the true values of temporal discontinuities as per Table 1.
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ity of solutions can be partly corrected by the use of the b-positive approach (Van der396

Elst, 2021) (5.B). The b-positive approach (Van der Elst, 2021) uses moving-windows397

to infer temporal variations of bvalue without being biased by the continuous decay of398

completeness for mainshock-aftershocks sequences. However, we show, that for discon-399

tinuous changes of completeness, the b-positive depends on the choice of the difference400

threshold dMc. Thus, dMc also needs to be adapted over time to correct for large vari-401

ations in ’background’ incompleteness, such as those between (S2) and (S3), to mitigate402

the risk of over-interpreting some temporal variations. This observation has also been403

highlighted by several recent studies (e.g. Lippiello & Petrillo, 2024).404

These methods can be very efficient and fast but they use truncated datasets, which405

can result in bvalue estimations based on very few events for periods with low detectabil-406

ity. With our new transdimensional approach, bvalue and completeness are jointly inferred407

together with a probabilistic estimate of temporal changes from the entire dataset.408

We applied our method to the synthetic dataset and conducted 50 parallel rj-McMC409

explorations with different initialisations for T in order to efficiently explore the model410

space. We present the results derived from the final stack of posterior densities coming411

from the 50 runs, each encompassing 5000 proposed models of temporal discontinuities412

(Figure 5.C,D,E,F). In total, 250000 temporal models were proposed out of which ap-413

proximately 41800 were accepted upon completion. The six temporal discontinuities are414

well retrieved and clearly identified (Figure 5.C). Analysis of the number of discontinu-415

ities at each step indicates that the algorithm converged towards the correct value in less416

than 2000 iterations, even though all initialisations began with random values of k rang-417

ing from 4 to 12. A burn-in period of 1000 iterations has been set to disregard initial it-418

erations. The maximum number of discontinuities allowed was set to 40 and did not af-419

fect the random-walk. For the 50 runs, the mean acceptance rate is around 30% for the420

move cases and 10% for the birth and death cases. These values are consistent with ac-421

ceptance values obtained by other applications of rj-McMC algorithm (Gallagher et al.,422

2009).423

Our approach allows to display the temporal evolution of the bvalue of the Gutenberg-424

Richter law along with the two parameters describing the detectability (Figure 5.D,E,F).425

At each time-bin over a 100 grid, the full probability distribution of bvalue is the sum of426

all the marginal densities that have been accepted. For the three parameters, the prob-427
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ability distribution comprises the true value even for periods with low detectability (Fig-428

ure 5.D.E.F). Specifically, for period S2 containing 261 events, the bvalue estimated by429

the transdimensional approach between 1.05 and 1.0 is close to the true value 1.0 with430

a 68% confidence interval of ±0.1. As this period involves the fewest events, the rela-431

tive probability is the lowest. This confidence intervals narrows to ±0.02 for the period432

S3 containing 2538 events. Despite a large increase of detectability between these two433

periods, the bvalue remains stable. We demonstrate that the transdimensional framework434

retrieves the true values of the three parameters governing the frequency-magnitude dis-435

tribution of earthquakes over time for a synthetic case. This approach gives larger un-436

certainties compared to those proposed by classical methods, primarily because it ac-437

counts, in addition to the number of earthquakes used, for existing correlations between438

parameters that classical approaches fail to resolve.439

3 Application to a real earthquake catalog440

A significant challenge is thus to select a region where the bvalue and the complete-441

ness are homogeneous, and the Gutenberg-Richter law is valid for the chosen sub-dataset442

of earthquakes. The transdimensional approach presented here addresses this issue in443

time, yet the selection of a catalog with spatially homogeneous bvalue remains crucial to444

better understand the physical meaning of bvalue temporal variations.445

Another challenge addressed by the transdimensional approach is the temporal vari-446

ations in completeness magnitude, influenced by mainshock-aftershock sequences and sea-447

sonal variations due to anthropogenic or meteorological factors(e.g. Iwata, 2013). Here,448

we choose an earthquake catalog with expected variations in completeness to evaluate449

the approach’s efficiency and compare results with other methods.450

3.1 Data : Far-Western Nepal seismicity451

Our first application of the transdimensional approach to investigate bvalue vari-452

ations focus on the temporal evolution of seismicity in a very seismically active region453

of Nepal. We use the earthquake data collected during two years by the Himalayan Kar-454

nali Network (HiKNet), the first dense seismological network of 15 temporary stations455

deployed in far-western Nepal. This earthquake catalog is derived from two studies (Hoste456
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Figure 6. Far-western Nepal seismicity recorded during two years by the temporary seismo-

logical experiment of the Himalayan-Karnali network (HiKNet) (white triangles) and the perma-

nent seismological network of the National Earthquake Monitoring Research Center (NEMRC)

(black triangles). We use the earthquake catalog and focal mechanism from Laporte et al. (2021).

NK: North Karnali sector, SK: South Karnali sector. In this study, we focus our analysis on the

geographical subset represented by the inner red rectangle comprising 2593 events : the Bajhang

region (BAJ).

et al., 2018; Laporte et al., 2021) which focuses on the spatio-temporal analysis for seis-457

motectonic interpretation.458

In Nepal, the main feature of seismicity is a belt of intense microseismicity which459

is located at depth on the locked portion of the Main Himalayan Thrust (MHT), (e.g.460

Ader et al., 2012). The MHT is the main active thrust fault which accommodates most461

of the shortening between the Indian plate and the Tibetan plateau. The seismicity is462

interpreted as resulting from stress build-up on the locked portion of the MHT. It ex-463

hibits a multimodal behavior, generating intermediate earthquakes (M > 5) that par-464

tially rupture the MHT, as well as large (M > 7) and great earthquakes (M > 8) that465

may rupture several lateral segments of the MHT, sometimes up to the surface (Dal Zilio466

et al., 2019).467
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In the area of interest in this paper, the most recent great earthquake occurred in468

1505 A.D. according to historical records supported by paleoseismological evidence (Hossler469

et al., 2016; Riesner et al., 2021).470
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Figure 7. (A) Temporal distribution of magnitudes during two years of the HiKNet ex-

periment in the Bajhang region. The color scale is the same as Figure 6. The red curve is the

temporal evolution of the cumulative number of events. Horizontal lines correspond to station

availability. Blue shades are the usual monsoon periods in Nepal. (B) Frequency-magnitude dis-

tribution in normal (blue histograms) and logarithmic (orange curve) scale. The two histograms

are histograms for bins of 0.2 and 0.1 in magnitude, respectively.

Between December 2014 and September 2016, the temporary experiment recorded471

almost 4500 earthquakes in this region. The seismicity is structured into three seismic472

belts: one large belt in the westernmost part (BAJ) and two separate belts in the east473

(SK and NK) (Figure 6). Each belt contains several seismic clusters of different size and474

spatio-temporal behaviour. Most of them are located at mid-crustal depths (15−20km)475

close to mid-crustal structures such as the toe of mid-crustal ramps, which accumulate476

most of the interseismic strain on the fault. The geometry of the MHT fault is consid-477

ered to be the primary factor influencing microseismicity. The focal mechanisms of the478

largest earthquakes are consistent with thrust faulting.479

Facing challenges due to temporal variations of the detectability caused by station480

losses and monsoon periods, we chose this dataset to study temporal variations in bvalue481

using the transdimensional approach. In Nepal, the monsoon season typically spans from482

early June to September, peaking in July and August. During this period, the high-frequency483
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seismic noise increases, leading to fewer detected earthquakes. Additionally, in 2015, 9484

out of 24 instruments were successively disconnected by storms. These typical monsoon485

periods are highlighted in blue in Figure 7.A, along with the availability of the 24 instru-486

ments throughout the experiment487

To ensure spatial homogeneity of bvalue, we focused on a geographical region of 94km488

by 57km, corresponding to the seismicity of the western belt, which is the most instru-489

mented. 2593 earthquakes were recorded within this specific region. The cumulative num-490

ber of earthquakes reveals distinct periods of seismic activity (see Figure 7.A). Using the491

frequentist approach of Aki for a completeness magnitude of 1.5 on the full time period,492

we get a bvalue of 0.82±0.08 (Figure 7.B) consistent with the bvalueobtained in far-western493

Nepal and more generally in Central and Eastern Nepal (e.g. Laporte et al., 2021). This494

low bvalue is also consistent with the thrust-type faulting style (e.g. Schorlemmer et al.,495

2005).496

3.2 Results497

For this real application, we configure the rj-McMC algorithm to conduct 15,000498

iterations for each individual run. However, as for the synthetic case, we initiate 50 par-499

allel runs, totaling 750,000 models tested starting from distinct random seeds. For each500

of them, we burn 4,000 iterations and thin the chain by keeping only 1 out of 5 accepted501

models.502

The algorithm converges towards 9 temporal discontinuities (defined as being over503

a probability of 15%) after 5000 iterations (Figure 8.A). The total acceptance rate is 23%504

and is above 20% for the three case scenarios births/deaths/moves.505

Moreover, comparing the position of these discontinuities with the magnitude dis-506

tribution of the seismicity, we can see that these nine discontinuities are coincident with507

some specific time periods of the dataset. We interpret and discuss each of them with508

respect to the stacked marginal densities of probability for bvalue, µ and σ (Figure 8).509

• S1 corresponds to the time of the MLv 4.0 earthquake of 22 January 2015, located510

at the base of the mid-crustal ramp of the MHT and followed by an increased seis-511

mic rate of about 300 events occurrence in 9 days (Hoste-Colomer et al., 2018; La-512

porte et al., 2021). For this seismic crisis, characterised as a large seismic swarm513
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Figure 8. (A)Probability of temporal discontinuities at the completion of the rj-McMC al-

gorithm and the temporal distribution of magnitudes in the background. The color-scale is

the same as Figure 7. Here, a discontinuity is defined by the 15% probability threshold. (B)

Marginal density distribution of bvalue over time. (C) Marginal density distribution of µ over

time. Horizontal lines are the stations availability in red for the permanent network and blue for

the temporary network. (D) Marginal density distribution of σ over time For B), C) and D), the

thin red dashed line is the mean probability for the respective marginal density distribution. The

thin black lines are the ±1σ uncertainty. The blue vertical dashed lines are the position to the

solution of temporal discontinuities according to A).

by Hoste-Colomer et al. (2018), the bvalue and the two detectability parameters514

increase suddenly and then return to their previous value.515

• S2 corresponds to the loss of three stations (ML04, SJ26 and GJRN)(Figure 8.C),516

two of which were sited in the considered region (Figure 6). The confidence in-517

terval for every parameter becomes wider which is in accordance with fewer events518

detected. Only µ and σ present a clear discontinuous change. Specifically, µ in-519

creases from 0.5 ± 0.1 to 1.3 ± 0.3, and σ from 0.25 ± 0.05 to 0.32 ± 0.1. The520

bvalue remains within the uncertainties of S1 while its uncertainty becomes larger.521

–24–



manuscript submitted to JGR: Solid Earth

• S3 corresponds to the loss of two stations in the center of the considered region522

(WA07 and CH06) (Figure 8). In the region, only 5 out of 9 stations are available523

during the monsoon period. Between S3 and S4, the monsoon periods starts and524

the µ parameter increases along with degradation in detectability, the σ param-525

eter is not affected as much as µ. The mean bvalue stays within the confidence in-526

terval of previous periods with a larger uncertainty. There is no statistical evidence527

of bvalue variations during the monsoon period.528

• S4 corresponds to a brutal improvement in the detectability. µ decreases from 1.6±529

0.2 to 1.0±0.2. This time likely corresponds to the early end of the monsoon pe-530

riod at the beginning of September 2015.531

• S5 Both detectability parameters come back to the pre-monsoon values with the532

return of all 6 lost stations in October 2015. The bvalue remains constant around533

0.85± 0.1 during that time with a narrower confidence interval.534

• S6 The density probability of bvalue has a significant decrease at the beginning of535

June 2016 from 0.85±0.1 to 0.7±0.1. This time also corresponds to the expected536

beginning of the monsoon period, µ increases significantly and σ decreases.537

• S7 corresponds to the onset of the second largest seismic crisis recorded in that538

region. On the 29th of June a MLv4.8 earthquake occurred and was followed by539

several aftershocks including two MLv > 4 earthquakes. It seems that after this540

crisis that lasted 12 days, the bvalue comes back to its value of 0.85±0.15. How-541

ever this variation is not statistically significant because the confidence interval542

also increases due to the decrease in detectability. In fact, the µ parameter describ-543

ing the mean of the detectability function keeps increasing in steps. One station544

(KS11) at 50 km from the area of interest is also interrupted.545

• S8 Another station from the area of interest becomes unavailable (CH06) and the546

confidence intervals become wider. bvalue and σ are constant during that period547

and approximately equal to the mean value they had during the two years 0.8 and548

0.25 for bvalue and σ respectively. The mean detectability µ seems to increase slightly549

but this increase is within the confidence interval. However this increase can be550

attested by the simultaneous widening of confidence intervals that might be due551

to fewer events detected during the monsoon.552

• S9 in September 2015 corresponds to the end of the experiment, uncertainties are553

becoming wider with the disconnection of the firsts temporary stations.554
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Looking back at these results, the analysis of temporal variations of bvalue (Fig-555

ure 8) shows that there is no statistical evidence of temporal variations during the two556

years of the temporary experiment at the exception of a short period preceding one seis-557

mic crisis (S6). The b-Bayesian approach recovers as well the large variations of back-558

ground detectability which can be explained by the loss of stations during summer 2015559

and by the higher seismic noise during the monsoon periods. In particular, the µ param-560

eter from the detectability function is the most sensitive to detectability changes and can561

be used as a proxy for deciphering detectability variations. This additional information,562

which is not given by traditional approaches, can be very useful for the characterization563

of the efficiency of a seismic network over time. Moreover, these large variations of de-564

tectability are taken into account in the Bayesian estimation of the bvalue and act in the565

spread of its uncertainties along time. When all stations of the temporary network were566

available, the 1σ uncertainty of the bvalue is reduced to ±0.05. The widening of the pos-567

terior density function during the monsoon periods shows that during these periods the568

information contained in this earthquake catalog is not good enough to decipher some569

seasonal variations of the bvalue even though it might exists. Outside the scope of this570

study, as the temporary network recorded data between 2014 and 2016, this particular571

sector of far-western Nepal has experienced 5 moderate (ML > 5) damaging earthquakes572

since 2022, while the temporary experiment recorded none in two years.573

4 Discussion and Perspectives574

4.1 Comparison between classical approaches575

Most of the time, temporal variations in bvalue have been studied by applying the576

maximum likelihood approach (Aki, 1965; Utsu, 1966; Y. Shi & Bolt, 1982) over slid-577

ing time windows (e.g. Nuannin et al., 2005; Cao & Gao, 2002; Nanjo et al., 2012; Gu-578

lia & Wiemer, 2019). These techniques are dependent on the accuracy of the estimation579

of the time variations of the completeness magnitude (e.g. Helmstetter et al., 2006; Woess-580

ner & Wiemer, 2005) (Figure 9.A). More recently, the b-positive approach introduced581

by Van der Elst (2021) has been shown to be insensitive to the short-term incomplete-582

ness coming from mainshock-aftershocks sequences. Both approaches are very efficient583

and do not require any prior information on the bvalue but they use a small part of the584

dataset only. The uncertainty in bvalue is often estimated using formulas from Aki (1965)585

or Utsu (1966) within the sliding window, or by employing the bootstrap method(e.g.586
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Woessner & Wiemer, 2005). Importantly, this uncertainty is consistently estimated in-587

dependently of the uncertainty associated with the completeness magnitude nor their588

correlation.589

Comparing the outcomes derived from traditional approaches with those obtained590

using our b-Bayesian method on the earthquake catalog of far-western Nepal reveals in-591

trinsic differences among these methodologies (Figure 9). Notably, both classical approaches592

exhibit sensitivity to the selection of the magnitude threshold (Mc or dMc), whereas the593

b-Bayesian method effectively captures the uncertainty arising from fluctuations in de-594

tectability. Our findings indicate that most bvalue variations shown by the classical moving-595

window techniques fall within the uncertainties accounted for by the b-Bayesian approach.596

These small-scale variations can sometimes lead to over-interpretations of the tempo-597

ral variations in bvalue.598
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Figure 9. (A) Comparison of the temporal variations of bvalue obtained using the b-Bayesian

approach for far-western Nepal in red-shaded and the frequentist approach from Aki applied on

a moving-window of 500 events as the 4 bold lines, depending on 4 values of completeness mag-

nitude Mc. (B) Same as (A) but compared to the b-positive approach with 4 different values for

dMc. For both sub-figures, the legend gives the mean number of magnitudes kept for the bvalue

estimates in the windows, depending on the magnitude cut-off.

Despite using a moving-window of 500 events, this number is significantly reduced599

by truncation at Mc (up to only 17% of magnitudes retained for Aki’s approach with Mc =600

1.6) or by using only positive magnitude differences for the b-positive method (> 50%)601
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(Figure 9), while the b-Bayesian approach does not require any truncation and uses 100%602

of all the available data. Moreover, b-Bayesian proves to be the only tool for decipher-603

ing jointly the variations in detectability and can be used as a preliminary step before604

applying classical approaches to ensure that detectability is adequately considered.605

In Table 2, we propose a comparison between the two classical approaches presented606

in this paper and the novel b-Bayesian approach. In conclusion, b-Bayesian proposes to607

use all the data available to invert for the temporal variations of three parameters re-608

lated to the frequency-magnitude distribution. It uses Bayesian inference to capture the609

full density distributions and does not require any parametrization. This can be done610

at the cost of the computational time which is currently being reduced.611

Aki (1965) b-Positive (van der Elst., 2021) b-Bayesian (this study)

Inversion param. bvalue bvalue bvalue, µ, σ

Approach type MLE MLE Bayesian

Uncertainties estimates MLE Bootstrap Full PDF

Truncation Mc (∗) dMc None

Used Data < 40% < 50% 100%

Temporal Moving-window Moving-window Probabilistic

Comp. Time Immediate (∗∗) Immediate (∗∗) Long (∗∗∗)

Table 2. Table of comparison between the two classical approaches from Aki (1965), van der

Elst (2021) and b-Bayesian. (∗) arbitrary (∗∗) for one parametrization of Mc/dMc and choice of

moving-window (∗∗∗) no arbitrary parametrization

612

4.2 Perspectives613

The frequency-magnitude distribution of earthquakes varies temporally and spa-614

tially. At the regional scale, bvalue is thought to reflect the faulting style and the evo-615

lution of the state of stress on the faults (e.g. Schorlemmer et al., 2005; Gulia & Wiemer,616

2019). This is also supported by experimental studies on the micro-failure (e.g. Scholz,617

1968, 2015). Consequently, numerous studies have focused on monitoring the bvalue at618

regional scales to discriminate foreshock and mainshocks sequences (e.g. Gulia et al., 2020;619
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Van der Elst, 2021). At the local scale, the bvalue has also been proven valuable for de-620

scribing the spatio-temporal behavior of seismic clusters (e.g. Farrell et al., 2009; Gui621

et al., 2020; Herrmann et al., 2022) or characterizing swarm-like sequences in relation622

to fluid-pressure (e.g. Hainzl & Fischer, 2002; Shelly et al., 2016; De Barros et al., 2019).623

We are now looking forward to applying b-Bayesian in these different contexts to dis-624

cuss our results in comparison with previous studies and infer valuable information for625

characterizing seismic sequences.626

The b-Bayesian method addresses temporal variations in the bvalue using Bayesian627

inference. However, these variations are generally considered to be secondary compared628

to spatial variations (Wiemer & Wyss, 1997; Öncel & Wyss, 2000). Currently, both the629

b-Bayesian and classical approaches require a spatial subset of earthquakes with a ho-630

mogeneous bvalue, making it challenging to determine the adequacy of the dataset. Sim-631

ilar to the inversion of seismic velocities in tomography (e.g. Bodin & Sambridge, 2009),632

adapting the transdimensional approach to account for 2D spatial partitions could en-633

able the capture of both temporal and spatial variations in the frequency-magnitude dis-634

tribution. This is a future development of the method.635

5 Appendix636

5.1 Method : the Markov-chain Monte-Carlo637

The Markov-chain is initialised by a randomized choice of a temporal model T (c) =638

[T
(c)
1 , T

(c)
2 , . . . T

(c)
k ] with a number of discontinuities k(c) drawn between two values kmin639

and kmax. In practice, temporal discontinuities are considered as floating values in the640

range between min(tobs) and max(tobs). After this initialisation, at each iteration of the641

reversible-jump algorithm a new temporal model is proposed by making a random choice642

among three possibilities :643

• (i) a death of a random temporal discontinuity T
(p)
j . Then, the proposed dimen-644

sion is k(p) = k(c) − 1.645

• (ii) a birth of a random temporal discontinuity T
(p)
j . Then, the proposed dimen-646

sion is k(p) = k(c) + 1.647

• (iii) a move of a random temporal discontinuity T
(p)
j around its previous location.648

Then the proposed dimension remains k(p) = k(c).649
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Each proposal (birth/death/move) has the same uniform probability of being drawn.650

For the moves, we randomly draw a time offset δt from a normal distribution around the651

previous time of a random time discontinuity of the current model. The standard de-652

viation σδt of this normal distribution controls the efficiency of the exploration. A large653

standard deviation will produce large jumps with many rejected models and poor pre-654

cision while a small standard deviation will produce very similar models and accept most655

of them. We follow the approach of (Gallagher et al., 2009) which tunes the value of σδt656

in order to get close a 20% acceptance rate. Every five hundred iterations, we monitor657

the acceptance rate and increase or decrease the σδt linearly with the deviation of the658

acceptance rate from the 20%.659

The acceptance criterion is computed according to the Metropolis-Hastings rule660

in order to guide the chain towards the target distribution. Its general form for trans-661

dimensional functions is written as follows :662

α = min(1, prior ratio× likelihood ratio× proposal ratio× |J |) (27)

such as :663

α = min(1,
p(T (p))

p(T (c))
× p(d|T (p))

p(d|T (c))
× q(T (c)|T (p))

q(T (p)|T (c))
× |J |) (28)

where |J | is the Jacobian of the transformation from the current model to the pro-664

posal and can be shown as equal to 1 (e.g. Gallagher et al., 2009; Bodin & Sambridge,665

2009). For moves of discontinuities, the dimension remains fixed, proposals are symmet-666

ric, and the prior ratio is one. The acceptance criterium is simply given by the usual Metropo-667

lis criterion :668

α = min(1,
p(d|T (p))

p(d|T (q))
) (29)

For birth proposals, we randomly draw the location of a new discontinuity from the prior669

distribution. In this way, the prior and proposal ratios cancel out for birth and death670

steps, and thus the acceptance criterion (??) also conveniently becomes the usual Metropo-671

lis criterion.672
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6 Open Research673

Codes of the b-Bayesian will be made available on github upon publication. The674

earthquake catalog of far-western Nepal used in Section 3 is available in Supplementary675

Material of Laporte et al. (2021).676
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Key Points:6

• The bvalue from the Gutenberg-Richter law is usually inferred by truncating earth-7

quake catalogs above a completeness magnitude. We propose to use all the data8

available and invert conjointly for bvalue and two parameters describing the de-9

tectability.10

• Using a Bayesian framework we retrieve the full posterior density function of bvalue11

with a more realistic evaluation of its uncertainties than classical approaches.12

• b-Bayesian performs a transdimensional inversion to recover the temporal changes13

of the bvalue and detectability.14
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Abstract15

The frequency/magnitude distribution of earthquakes can be approximated by an ex-16

ponential law whose exponent (the so-called bvalue) is routinely used for probabilistic seis-17

mic hazard assessment. The b-value is commonly measured using Aki’s maximum like-18

lihood estimation, although biases can arise from the choice of completeness magnitude19

(i.e. the magnitude below which the exponential law is no longer valid). In this work,20

we introduce the b-Bayesian method, where the full frequency-magnitude distribution21

of earthquakes is modelled by the product of an exponential law and a detection law.22

The detection law is characterized by two parameters, which we jointly estimate with23

the bvalue within a Bayesian framework. All available data are used to recover the joint24

probability distribution. The b-Bayesian approach recovers temporal variations of the25

bvalue and the detectability using a transdimensional Markov chain Monte Carlo (McMC)26

algorithm to explore numerous configurations of their time variations. An application27

to a seismic catalog of far-western Nepal shows that detectability decreases significantly28

during the monsoon period, while the b-value remains stable, albeit with larger uncer-29

tainties. This confirms that variations in the bvalue can be estimated independently of30

variations in detectability (i.e. completeness). Our results are compared with those ob-31

tained using the maximum likelihood estimation, and using the b-positive approach, show-32

ing that our method avoids dependence on arbitrary choices such as window length or33

completeness thresholds.34

1 Introduction35

Classically, the probability density function of an earthquake of magnitude m above36

a magnitude of completeness Mc follows the Gutenberg-Richter law (Aki, 1965):37

p(m) = βe−β(m−Mc) (1)

where β = bvalue×ln(10). The bvalue is the seismic parameter that describes the38

relative number of large magnitude earthquakes versus smaller magnitude earthquakes.39

For global earthquake catalogues, the bvalue is typically close to 1, but has been shown40

to vary in both space and time when focusing on earthquake catalogues for specific seis-41

mogenic regions or time periods (e.g. Wiemer & Wyss, 1997; Ogata & Katsura, 2006).42

With the rapid growth of seismological instruments and recording capabilities, there is43

a need for advanced statistical methods to analyze earthquake catalogs. Here, we anal-44
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yse the distribution of earthquake magnitudes, focusing on the possibility to observe and45

interpret temporal variations in this distribution.46

The Gutenberg-Richter law is widely used as an earthquake recurrence model for47

Probabilistic Seismic Hazard Assessment (PSHA) studies (e.g. Cornell, 1968; Drouet et48

al., 2020). Consequently, the accurate estimation of bvalue and its uncertainties play a49

crucial role in the accuracy and robustness of seismic hazard estimates (e.g. Keller et50

al., 2014; Beauval & Scotti, 2004; Taroni & Akinci, 2020). For accurate hazard assess-51

ment, bvalue biases due to the incompleteness of earthquake catalogues need to be ad-52

dressed (e.g. Weichert, 1980; Plourde, 2023; Dutfoy, 2020; Beauval & Scotti, 2004) as53

well as possible temporal or spatial variations of the bvalue (e.g. Beauval & Scotti, 2003;54

Yin & Jiang, 2023).55

The physical interpretation of these spatio-temporal variations in the frequency-56

magnitude distribution of earthquakes has been a subject of ongoing debate for years57

(e.g. Mogi, 1962; Scholz, 1968; Carter & Berg, 1981; Herrmann et al., 2022). Based on58

observations from laboratory earthquake simulations, which are commonly used as ana-59

logues for studying natural earthquake behaviour, it has been proposed that the bvalue60

is inversely related to the normal and shear stress applied to the fault (Scholz, 1968). At61

the scale of the seismic cycle, which is reproduced in stick-slip experiments with controlled62

stress and friction properties, the bvalue has been observed to decrease linearly with stress63

build-up and to increase abruptly with the stress-drop release during earthquake rup-64

ture (Avlonitis & Papadopoulos, 2014; Goebel et al., 2017; Rivière et al., 2018; Bolton65

et al., 2020). Extending this observation to real earthquake systems is not straightfor-66

ward because real earthquake catalogues contain additional uncertainties and the esti-67

mation of the actual state of the stress field is another inverse problem.68

However, the bvalue is also widely used to characterize real earthquake catalogs. It69

is commonly estimated to characterize earthquake clusters and discriminate between seis-70

mic swarms (e.g. De Barros et al., 2019). Some variations in bvalue have been observed71

for different earthquakes depths or within different stress regimes (Mori & Abercrom-72

bie, 1997; Schorlemmer et al., 2005; Scholz, 2015; Petruccelli et al., 2019; Morales-Yáñez73

et al., 2022). Low bvalue (< 0.8 ), associated to a larger number of larger magnitudes74

earthquakes compared to the normal regime, have been observed for several earthquake75

sequences occurring before a large earthquake rupture (e.g. Nanjo et al., 2012; Chan et76
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al., 2012; H. Shi et al., 2018; Li & Chen, 2021; Van der Elst, 2021; Kwiatek et al., 2023;77

Wetzler et al., 2023). This observation has a major impact for the identification of pre-78

cursory phases before large mainshocks. Recently, bvalue monitoring has been proposed79

to serve as a stress-meter for discrimination of foreshock sequences (e.g. Gulia & Wiemer,80

2019; Ito & Kaneko, 2023). This topic remains under debate due to large uncertainties81

that could arise either from earthquake catalogs or from bvalue estimation approaches82

(e.g. Lombardi, 2021; Spassiani et al., 2023; Yin & Jiang, 2023; Geffers et al., 2022; Go-83

dano et al., 2024).84

The most classical approach for estimating bvalue from a catalog of earthquake mag-85

nitudes is the maximum likelihood estimation of Aki and its generalization (Aki, 1965;86

Utsu, 1966), which depends on the arbitrary choice of the completeness magnitude Mc87

:88

β =
1

m−Mc
(2)

with m the mean of magnitudes greater than Mc. Using this formula, only events with89

magnitudes larger than Mc are used to estimate β.90

Unnoticed changes in completeness over time are the main source of bias when study-91

ing bvalue temporal variations (e.g. Woessner & Wiemer, 2005; Helmstetter et al., 2006;92

Mignan & Woessner, 2012; Lombardi, 2021; Plourde, 2023; Godano et al., 2023) Two93

main sources of incompleteness are usually identified (e.g. Lippiello & Petrillo, 2024) :94

(1) the background incompleteness coming from momentary changes in the detectabil-95

ity of the seismic network, and (2) the short-term aftershock incompleteness (STAI) which96

describes the short but large changes in completeness that occur during mainshock-aftershock97

sequences where large earthquakes mask smaller ones (e.g. Helmstetter et al., 2006; Hainzl98

& Fischer, 2002). The b-positive approach (Van der Elst, 2021) is a variant of Aki’s max-99

imum likelihood approach, using differences in the magnitudes of successive earthquakes100

to propose a moving-window estimate of temporal changes in the bvalue during mainshock-101

aftershock sequences without being biased by STAI.102

β =
1

m′+ − dMc

(3)
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with m′+ the mean of positive magnitudes differences greater than dMc, which is a cho-103

sen value that should be greater than twice the minimum magnitude difference. Based104

on the fact that two consecutive events in a mainshock-aftershock sequence share the same105

completeness, this approach is now frequently used for a more accurate estimation of tem-106

poral variations of bvalue.107

Even though the b-positive approach provides a major advantage in comparison108

to Aki’s classical approach, it still suffers from its dependence on the choice of dMc and109

to the size of the moving-window (e.g. Lippiello & Petrillo, 2024). Furthermore, the bvalue110

estimate is computed on less than half of the available data and uncertainties are usu-111

ally assessed using a bootstrap approach (Van der Elst, 2021).112

In this paper, we introduce the b-Bayesian approach to explore the temporal vari-113

ation of bvalue, while addressing the problems of classical frequentist approaches. We pro-114

pose to invert for bvalue using the entire catalogue, taking into account a detectability115

function. By adopting this approach, our results are independent of the arbitrary choice116

of a completeness magnitude. Instead of traditional methods that compare frequency-117

magnitude distributions over random data subsets or that recover pseudo-continuous tem-118

poral variations using moving time windows, we address temporal variations in bvalue119

and detectability by considering the number and positions of temporal discontinuities120

where bvalue or detectability changes. The inversion of temporal discontinuities is achieved121

using a transdimensional framework.122

Transdimensional inversion is commonly used in seismic tomography to allow the123

data to determine the level of spatial complexity in the recovered tomographic model124

(e.g. Bodin & Sambridge, 2009; Bodin et al., 2012). It has recently been adapted to es-125

timate variations in the bvalue from truncated catalogs along one dimension, such as time126

or depth (Morales-Yáñez et al., 2022). Here, we use transdimensional inversion to re-127

cover one-dimensional partitions of the entire earthquake dataset. A Bayesian framework128

provides a global formulation of the inverse problem and allows for the probabilistic es-129

timation of temporal changes of bvalue, and detectability. The complexity of the model130

does not depend on any arbitrary parameter, but is determined by the complexity of the131

data.132

This paper is organized as follows. First, we describe the novel b-Bayesian approach133

for a time-invariant case, including the assessment of detectability using all available mag-134
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nitude data. We describe how we extend this approach using a transdimensional frame-135

work in order to invert for temporal variations based on the complexity of the data. We136

present the results obtained using a synthetic catalog generated to mimic real-world sce-137

narios. A first application of the b-Bayesian method is presented using a real earthquake138

catalog. We compare the results of b-Bayesian with the two frequentist approaches : the139

maximum likelihood estimate and the b-positive to describe the temporal variation of140

bvalue and the temporal variations of detectability for an earthquake catalog of far-western141

Nepal spanning two years of microseismicity.142

2 Method : A Bayesian framework143

In this study, a dataset is an earthquake catalogue which corresponds to a set of144

N observations of (non-discrete) magnitudes mi (i = 1 . . . N) that we note :145

d = [m1,m2, . . .mN ] (4)

From hereafter, we refer to conditional probabilities using p(a|b). We know from the Gutenberg-146

Richter law (eq.1) that the probability density of observing one earthquake i of magni-147

tude mi ≥ Mc for a given β is :148

p(mi|β) = βe−β(mi−Mc) (5)

and is zero if mi < Mc. Then, assuming that the magnitudes of the seismic events are149

independent, we can write the probability of observing the entire earthquake dataset d150

with mi ≥ Mc, p(d|β), as :151

p(d|β) =
N∏
i=1

p(mi|β) = βNe−βN(mi−Mc) (6)

where mi, is the mean magnitude of events with mi ≥ Mc and Mc, the magni-152

tude of completeness. Note here that the value of β that maximizes (eq.6) is the max-153

imum likelihood solution given by Aki’s formula in (eq.2).154

2.1 The temporally invariant case155

In practise, seismic catalogs are truncated at the completeness magnitude Mc in156

order to avoid biases due to the detection capacity (e.g. Aki, 1965; Utsu, 1966). As a157

result, the classical approach for b-value estimation strongly depends on the choice made158

for Mc. Various methods have been developed for assessing the completeness magnitude159
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(e.g. Ringdal, 1975; Ogata & Katsura, 1993; Woessner & Wiemer, 2005; Mignan & Woess-160

ner, 2012) or to correct the dataset for its temporal variations (e.g. Helmstetter et al.,161

2006; Cao & Gao, 2002; Chan et al., 2012). However, defining such a completeness mag-162

nitude always implies to ignore a significant portion of a dataset that may contain valu-163

able information about the statistics of seismicity. Here instead, we propose to analyse164

the entire dataset by modelling the entire frequency-magnitude distribution of earthquakes.165

To do so, the Gutenberg-Richter law is modulated by a detection law q(m) such that now166

:167

p(mi|β) =
1

K
q(mi)βe

−βmi (7)

where q(m) defines the probability density of detecting an event, and K a constant168

to insure that the probability distribution integrates to one :169 ∫ ∞

Mmin

p(mi|β)dm = 1 (8)

with Mmin the smallest earthquake magnitude in the catalog.170

In this way, the probability of observing an event is the product of the probabil-171

ity of occurrence (given by the Gutenberg Richter law) and the probability of detection172

(given by the detection law q(m) that varies from 0, no detection, to 1, 100% detection).The173

error function has been proposed in the literature to represent the probability of detec-174

tion of an event in the presence of log-normal seismic noise (e.g. Ringdal, 1975; Ogata175

& Katsura, 1993; Daniel et al., 2008). The error function (see Figure 1.A) depends on176

two parameters µ and σ such as :177

q(m) =
1

2
+

1

2
erf

(
m− µ√

2σ

)
(9)

where µ represents 50% of probability of detection for an earthquake of magnitude m =178

µ, and becomes 84% for m = µ+σ. The magnitude of completeness is the equivalent179

of the 84% threshold. This function fits adequately the frequency-magnitude distribu-180

tion for a variety of cases (Ogata & Katsura, 1993; Woessner & Wiemer, 2005).181

From equations (7) and (8), we can write :182

K =

∫ ∞

Mmin

q(m)βe−β(m−Mmin)dm (10)

Fortunately, this integral for the error function q(m) in (eq.9) has a closed form solution183

between Mmin and infinity :184

K = q(Mmin) +
(
1− q(Mmin + βσ2)

)
exp

(
β2σ2

2
− β(µ−Mmin)

)
(11)
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Now assuming that magnitudes are independent, the probability of observing a full185

dataset d is :186

p(d|ω) =
N∏
i=1

p(mi|ω) =
(

β

K

)N N∏
i=1

q(mi)× e−βN(mi−Mmin) (12)

where ω = [β, µ, σ] is our set of three unknown model parameters. Our goal here is to187

estimate these parameters from a set of realizations d. This is an inverse problem that188

can be formulated in a Bayesian framework, where the posterior solution p(ω|d) is the189

product between the model priors and the likelihood function p(d|ω) (eq.12).190

p(ω|d) = p(β, µ, σ)p(d|ω) (13)

Here we set independent uniform prior distributions for the three parameters, partly191

because they are not related to the same physics: bvalue is related to seismicity and µ192

and σ to network detectability. Although we can expect correlations between these pa-193

rameters from the data (i.e. a posteriori), our level of knowledge is independent for each194

parameter. This independence greatly facilitates Bayesian inference. For each param-195

eter, we use a simple uniform prior distribution, independently defined between a fixed196

range of realistic values. The choice of the bounds is guided by the literature and should197

be chosen depending on the seismotectonic context and the mean detectability of the net-198

work. We advise to impose a relatively wide range of values for the bvalue inference, al-199

lowing both high (> 1) and low (< 1) bvalue for an earthquake catalog. In the context200

of geothermal or volcanic activity, this range may be extended to allow larger values (up201

to 2.5) for the bvalue. The choice of bounds for the µ parameter should be guided by the202

level of detectability of the seismic network and the ”expected” variations in complete-203

ness. For a local network (seismicity included within 50 km), which essentially records204

microseismicity, we can set this range of values between 0.5 and 2. In the presence of at205

least one mainshock/aftershock sequence, this range should also be increased. The prior206

distribution on σ can be set between 0.01 and 0.5 and does not need to be adjusted de-207

pending on the context.208

The posterior distribution (eq.13) can be numerically approximated using a clas-209

sical Monte-Carlo approach.210

As an example, we construct a synthetic dataset of 4460 independent magnitudes,211

randomly drawn from a Gutenberg-Richter law characterized by bvalue =
β

log(10) = 0.9212
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and modulated by an error detection function characterized by µ=0.75 and σ=0.34 (see213

Figure 1.A). We then estimate our set of parameters ω = [β, µ, σ] from the catalogue,214

by approximating the posterior distribution p(ω|d) with a standard Monte Carlo scheme215

by randomly sampling the model priors. The resulting 3D posterior density function can216

be projected onto each parameter (Figure 1.B) to derive 1D and 2D marginal distribu-217

tions (Figure 1.C). For example, the marginal distribution for β is simply obtained by218

integrating the posterior over µ, and σ :219

p(β|d) =
∫ ∫

p(β, µ, σ|d) dµ dσ (14)
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Figure 1. (A) [Top] Detection function q(m) associated with the synthetic dataset [Bottom]

Frequency-magnitude distribution of a synthetic catalog with values of bvalue = 0.9, µ = 0.75 and

σ = 0.34. The red dotted line corresponds to the model ω = [0.92, 0.76, 0.35] that best fits the

observations. The yellow area corresponds to the distribution of magnitudes inferior to (µ + σ)

that are usually removed by classical approaches (about 60% of available data). (B) Marginals

distributions of the posterior function: p(bvalue|d), p(µ|d) and p(σ|d) from left to right, respec-

tively. Here, posterior functions are normalized by their maximum. (C) 2D marginal distributions

of the posterior function. True values are represented by the red cross.

Note that the 2D marginals are useful to show the correlations between pairs of pa-220

rameters. Uncertainty estimates of the three parameters can be obtained with the 1σ221

confidence interval.222
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Compared to optimization approaches where only the best fitting (i.e. maximum223

likelihood) ω is obtained, our method provides the 3D posterior density distribution, p(ω|d),224

from which parameter correlations and uncertainties can be estimated. Moreover, the225

dataset is no longer truncated above a completeness magnitude, instead, the full frequency-226

magnitude distribution is now used to jointly invert for bvalue and detectability.227

2.2 Temporal variations of b-value228

2.2.1 A transdimensional parametrization229

Going one step further, we now consider that ω can vary with time and our goal230

is to recover the location of temporal changes. Our three parameters in ω are considered231

constant in periods separated by abrupt changes (see Figure 3). To that aim, temporal232

variations are modeled with a set of discontinuities T :233

T = [T1, T2, . . . Tk] (15)

where, k is the number of temporal discontinuities and Tj (j = 0 . . . k) the times at which234

the frequency-magnitude distribution changes. The unknown models vectors of the time235

varying frequency-magnitude distribution will be denoted :236

Ω = [ω1, ω2, . . . ωk+1] (16)

where ωj = [βj , µj , σj ] is the local model predicting the sub-dataset dj between two dis-237

continuities [Tj−1, Tj ]. Note that T0 = min(tobs) and Tk+1 = max(tobs). The full pos-238

terior solution p(Ω,T|d) describes the joint probability for local models [ω1, ω2, . . . ωk+1]239

predicting events between each temporal discontinuities [T1, T2, . . . Tk] of the temporal240

model, T. Since the dimension of the model varies with the number of discontinuities,241

k, which is unknown, the inverse problem is so-called transdimensional. The posterior242

p(Ω,T|d) does not have an analytical solution but can be sampled with a Monte Carlo243

algorithm. In this work, we propose to isolate the part of the posterior solution that is244

transdimensional (and to sample it with an appropriate algorithm), and to separate it245

from a part where the dimension is fixed.246

That is, the full posterior solution p(Ω,T|d) can be developed as a product of a247

conditional term p(Ω|d,T) and a marginal term p(T|d) :248

p(Ω,T|d) = p(Ω|d,T)× P (T|d) (17)
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The following sections describe each of these terms in detail and how they can be ap-249

proximated.250

2.2.2 The conditional posterior p(Ω|d,T)251

The conditional term p(Ω|d,T) describes the probability distribution for param-252

eters Ω for a given time partition T (Figure. 2). It can be itself decomposed with the253

Bayes theorem into the product of a likelihood distribution and a prior distribution :254

p(Ω|d,T) = p(d|Ω,T)× p(Ω|T) (18)

Since all magnitudes are independent, the likelihood is the product of likelihoods for ev-
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Figure 2. (A) Initial iteration of the Markov chain : plot of the conditional probability

p(d|bvalue,T), the probability of bvalue for a fixed time model T of dimension k = 4. The 4

black vertical lines are the discontinuities of the proposed time model T. The 3D posterior den-

sity function is computed for each data subset Tj(j = 0 . . . 4). The bold line is the mean posterior

density function of βj over time. Here, the synthetic earthquake dataset has been constructed

to represent 6 discontinuities. The six green vertical dashed lines are the theoretical disconti-

nuities. (B) Iteration 500 of the McMC: preliminary result of the bvalue time variations, sum

of the marginal density functions of the accepted models. The six discontinuities are almost all

retrieved. (C) Final iteration of the Markov Chain : sum of marginal density functions of the

totality of accepted models. The final temporal evolution of bvalue fits the true bvalue of the syn-

thetic dataset which are represented in bold dashed horizontal lines.

255

ery sub-dataset dj given by the temporal model T:256

p(d|Ω,T) =

k+1∏
j=1

p(dj |Ω,T) (19)
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And since the magnitudes of events dj occurring between two discontinuities [Tj−1, Tj ]257

only depend on the local parameters ωj = [βj , µj , σj ], we can write the likelihood :258

p(d|Ω,T) =

k+1∏
j=1

p(dj |ωj ,T). (20)

where p(dj |ωj ,T) is the likelihood of the data within a time period j which is simply259

given by equation (eq.12).260

The prior distribution for Ω given a fixed temporal model T, p(Ω|T) from equa-261

tion (eq.18), is chosen to be the same within each partition p(ωj |T), and simply corre-262

sponds to the uniform prior distribution used in the temporally invariant case (eq. 13).263

Thus, the conditional posterior p(Ω|d,T) is easy to sample as different periods j can be264

independently sampled with the same algorithm described in the previous section and265

used to produce results in Figure 1. Therefore, for any partition of the time T, we know266

how to probabilistically estimate the parameters Ω.267

The question now is to estimate the number and the position of discontinuities T.268

This is given by the marginal posterior p(T|d).269

2.2.3 The marginal posterior p(T|d)270

p(T|d) describes the probability of the time partition T = [T0, T2, . . . Tk] given271

the full dataset of observed magnitudes. It can be obtained by integrating the full pos-272

terior p(Ω,T|d) over the parameters Ω = [ω1, ω2, ..., ωk+1] :273

p(T|d) =
∫
Ω

p(Ω,T|d)dΩ (21)

According to Bayes’ rule, the posterior density function p(Ω,T|d) is proportional to the274

product of the likelihood p(d|Ω, T ) times the joint prior p(Ω,T).275

p(T|d) ∝
∫
Ω

p(d|Ω,T)p(Ω,T)dΩ (22)

The joint prior p(Ω,T) can be decomposed according to the property of joint den-276

sity distributions p(Ω,T) = p(T)× p(Ω|T). Applied to equation (eq.22), we get :277

p(T|d) ∝ p(T)×
∫
Ω

p(d,Ω|T)p(Ω|T)dΩ (23)

with p(T), the prior distribution for the time partitions and p(Ω|T), the prior for278

the models Ω given a fixed temporal model which is also present in the conditional pos-279
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terior (eq.18). The prior p(T) is a joint distribution, where the prior for each disconti-280

nuity Tj is given by a uniform distribution bounded between min(tobs) and max(tobs).281

The prior p(Ω|T) corresponds to the model priors described in the temporally-invariant282

case as described for the section above.283

Considering that the sub-datasets textbfdj of a time model T are independent, and284

since dataset dj only depends on parameters ωj the full posterior can be expressed as285

:286

p(T|d) ∝ p(T)×
k+1∏
j=1

(∫
ωj

p(dj |ωj ,T)p(ωj |T)dωj

)
(24)

where, p(dj |ωj ,T) is the likelihood of observing the subset dj between [Tj , Tj+1] accord-287

ing to the local model ωj and can be estimated using equation (eq.12) obtained in the288

time-invariant case.289

These integrals can be estimated using importance sampling. That is, for a large290

number of realizations xi, i = (1, . . . , N), randomly drawn from a distribution p(x) :291 ∫
p(x)f(x)dx ≈ 1

N
×

N∑
i=1

f(xi) (25)

Applied to (eq.25), we have:292

p(T|d) ∝ p(T)×
(

1

Nω

)(k+1) k∏
j=0

(
Nω∑
i=1

p(dj |ωj(i) ,T)

)
(26)

where for each period j, ωj(i) = [βj , µj , σj ](i) for i = (1, . . . , Nω) are a set of realiza-293

tions randomly drawn from the uniform prior distributions p(ωj |T).294

From equation (eq.26) we see that the marginal posterior is proportional to the prod-295

uct of the prior at temporal discontinuities p(T) and the product of the mean likelihoods296

p(dj |ωj(i) ,T), computed over Nw realisations of the model priors, between each tempo-297

ral discontinuity. In this way, adding an extra discontinuity will be valuable only if it suf-298

ficiently increases the local likelihood p(dj |wj(i) ,T) to counterbalance this first effect.299

Therefore, this methodology based on a Bayesian framework inherently follows the300

principle of parsimony, finding a balance between finding a simple model with a low num-301

ber of temporal discontinuities, k, and maximizing the overall likelihood p(d|Ω,T).302

2.2.4 The reversible-jump Markov-chain Monte-Carlo algorithm (rj-McMC)303

The marginal posterior p(T|d) can be numerically approximated with equation (eq.26)304

but only for a given partition T. One way to estimate the full distribution p(T|d) is through305
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a Monte Carlo exploration over the space of temporal discontinuities T. The solution306

is then a large ensemble of partition vectors Tl(l = 1 . . . Nl), with Nl the number of307

realizations Tl, whose distribution approximates the target solution p(T|d).308

As the dimension of T varies with the number of discontinuities k, p(T|d) is a trans-309

dimensional function and cannot be explored using a standard Metropolis algorithm (Metropolis310

et al., 1953; Hastings, 1970). One of the most popular technique for exploring a trans-311

dimensional posterior is the rj-McMC method (e.g. Green, 1995; Sambridge et al., 2006,312

2013) and more specifically the birth-death McMC algorithm (e.g. Geyer & Møller, 1994).313

The rj-McMC algorithm, used in many geophysical inverse problems (e.g. Gallagher et314

al., 2009, 2011; Bodin et al., 2012), allows both the model parameters and the model di-315

mension (i.e. the number of parameters) to be inferred. The rj-McMC follows the gen-316

eral principles of the McMC approach by generating samples from the target distribu-317

tion. A Markov chain follows a random walk, where at each step, a proposed model T(p)
318

is generated by randomly modifying a current model T(c) (Figure 3). This proposed model319

is then either accepted (and replaces the current model) or rejected. In this way, each320

step of the rj-McMC is a part of a chain converging to the target distribution.321

The convergence is considered sufficient by monitoring the evolution of the num-322

ber of discontinuities towards a stable value and when the rate of accepted models falls323

in the range of 20% to 40%. Details about the algorithm are given in Appendix. We also324

refer the reader to (Bodin et al., 2012) for further details.325

2.2.5 Appraising the full posterior distribution p(Ω,T|d)326

As a reminder, the solution to our inverse problem is the full posterior solution p(Ω,T|d)327

that describes the temporal changes of β, µ, and σ. As shown in equation (eq.17), this328

posterior can be written as the product of the marginal distribution p(T|d) describing329

the probability of temporal changes and a conditional distribution p(Ω|T,d) for the pa-330

rameters of the frequency-magnitude distribution, given a set of temporal changes.331

By decomposing in such a way the posterior distribution into a conditional and a332

marginal distribution, the Metropolis-Hastings rule is simplified by only simulating a trans-333

dimensional temporal point process for vector T (e.g. Geyer & Møller, 1994; Green, 1995).334

With the rj-McMC algorithm, we have a numerical way to approximate the marginal prob-335

ability distribution about the number and position of temporal changes p(T|d) (eq.26).336
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Figure 3. (Top)Left, P (β|Tl−1,d) over the 5 temporal segments (k = 4) of the proposed

temporal model Tl−1 for proposition l − 1 of the rj-McMC. On the right, the mean likelihood

over the 5 temporal segments for the three marginals posterior p(β|Tl−1,d), P (µ|Tl−1,d) and

P (σ|Tl−1,d). (Bottom) New proposal model Tl in case of a death proposition of the rj-McMC.

The two figures are the same as above : P (β|Tl,d) and the marginals computed for the proposed

temporal model with a lower dimension (k=3).

In addition, for each sampled temporal model Tl proposed at iteration l of the rj-McMC,337

we are able to easily compute the conditional probability p(Ω|d,Tl): the probability dis-338

tribution of β, µ, and σ for the given model Tl (eq. 20).339

At the completion, the full distribution for β, µ, and σ can therefore be obtained340

by summing the all the distributions p(Ω|d,Tl) for all the sampled models Tl ∈ T (c)
341

(Figure 2.B,C). In practice, at each time-bin over an arbitrarily fine grid, the full prob-342

ability distribution of β is the sum of all the marginal densities at this time over the en-343

semble solution for T(Figure 2.B,C). In this way, the mean and the standard deviation344

for our three parameters can be obtained as a smooth function of time (see Figure 2.C).345

2.3 Synthetic test346

2.3.1 Generated Data347

We simulate a synthetic earthquake catalog of 5683 independent events following348

frequency-magnitude distributions as realistic as possible with some temporal variations349
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in bvalue and detectability. In this section, we only consider a dataset with abrupt and350

discontinuous changes in the three parameters of the frequency-magnitude distribution.351

More precisely, the earthquake catalog is generated as follows :352

• A discontinuity corresponds to the time when at least one of the three parame-353

ters of the frequency-magnitude distribution changes. We generate a catalogue with354

six temporal discontinuities that we aim to recover. Therefore, the catalog is the355

combination of seven temporal subsets.356

• Within each temporal sub-dataset, earthquake magnitudes are drawn from a Gutenberg-357

Richter law characterized by a bvalue specified in the Table 1.358

• Earthquake occurrence is generated according to a basic epidemic-type aftershock359

sequence (Ogata, 1988) with a constant background rate. Each generated earth-360

quake can be followed by aftershocks according to the aftershock productivity law361

(Utsu, 1972). Aftershock occurrence time is modelled by the Omori power law (Omori,362

1894). The ETAS parametrization does not vary temporally. In particular, to char-363

acterise the temporal occurrence of aftershocks, we keep a constant petas value of364

1.1 and an αetas value of 1.5. For now, we do not generate the detectability vari-365

ations coming from the short-term incompleteness (e.g. Ogata & Katsura, 2006;366

Helmstetter et al., 2006) following large earthquakes.367

• We thin this ETAS earthquake catalog using the error detection law. Each event368

has a probability of being detected and preserved, or undetected and removed, ac-369

cording to its magnitude and some chosen µ and σ (see eq.9). Each pair of µ and370

σ for each of the seven sub-datasets are specified in the Table 1.371

The dataset is made to test the capabilities of our algorithm and approach. To that372

aim, there are some periods where bvalue remains constant while the detectability varies373

(S2 and S3) (Figure 4). We also include small detectability or bvalue changes (ex:S5 and374

S6). For the period with the highest detectability (S3), earthquakes with magnitudes as375

low as 0.01 are detected. Considering a definition of Mc = µ+σ, the completeness mag-376

nitude varies at most between subsets from 1.7 to 0.65.377

378
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Figure 4. (A) Temporal distribution of magnitudes over time for the 7 data subsets. Each

subset is represented with a different color. Grey vertical lines are the positions of the fixed

temporal discontinuities. (B) Frequency-magnitude distribution of each synthetic data subset in

logarithmic scale, respective colors from (A) are conserved. The slopes are related to the respec-

tive bvalue.

Subset S0 S1 S2 S3 S4 S5 S6

Nevents 514 647 261 2538 727 672 324

bvalue 0.70 1.10 1.00 1.00 0.80 0.70 0.65

µ 0.80 0.80 1.50 0.50 0.75 0.90 0.90

σ 0.35 0.30 0.20 0.15 0.30 0.40 0.15

Table 1. Set of chosen values for bvalue, µ and σ for each of the 7 data subsets. Nevents corre-

sponds to the number of earthquakes detected of each sub-set (after the detection thinning).

2.3.2 Results and comparison379

Let us start by applying classical approaches on this synthetic dataset. Ignoring380

temporal variations of bvalue and considering a constant completeness magnitude of 1.8,381

the frequentist approach (Aki, 1965) gives the maximum likelihood estimate over the com-382

plete catalogue of bvalue = 0.81 ± 0.03. This illustrates how the uncertainties can be383

underestimated when using the classical approach without considering temporal varia-384

tions. However, if we assume that we know the position of temporal discontinuities and385

that the completeness magnitude is correctly estimated using M true
ci = µi+σi for (i =386

0, . . . , 6), the true bvalue can be recovered by the maximum likelihood estimate within387

its uncertainties. However, for applications to real earthquake catalogues, the temporal388
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discontinuities are mostly unknown or at least ambiguous. Classical approaches there-389

fore deal with temporal variations by estimating the b-value over a moving window.390

Using a moving-window of 600 events and a constant completeness magnitude, Fig-391

ure (5.A) shows that depending on the temporal sub-dataset the maximum likelihood392

estimate tends to under-estimate or over-estimate the bvalue depending on the choice of393

Mc and the true detectability. In particular for (S2) with a low detectability, the choice394

of the completeness magnitude has a major influence on the results. This large variabil-395
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Figure 5. (A)Temporal variations of bvalue using the classical maximum likelihood estimate

(Aki, 1965; Utsu, 1966). The continuous curves are the moving-window estimate for a window

size of 600 events with different choices of completeness magnitudes depending on the color-scale.

(B) Temporal variations of bvalue using the b-positive approach (Van der Elst, 2021). The con-

tinuous curves are the moving-window estimate for a window size of 600 events with different

choices of difference threshold dMc depending on the color-scale. (C) Probability of temporal

discontinuities at the completion of the rj-McMC algorithm and the temporal distribution of

magnitudes in the background (D) Marginal density distribution of bvalue over time (E) Marginal

density distribution of µ over time (F) Marginal density distribution of σ over time. For each

subplot, the red horizontal lines represent the true parameter values fixed for each data subset,

while the blue vertical lines denote the true values of temporal discontinuities as per Table 1.
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ity of solutions can be partly corrected by the use of the b-positive approach (Van der396

Elst, 2021) (5.B). The b-positive approach (Van der Elst, 2021) uses moving-windows397

to infer temporal variations of bvalue without being biased by the continuous decay of398

completeness for mainshock-aftershocks sequences. However, we show, that for discon-399

tinuous changes of completeness, the b-positive depends on the choice of the difference400

threshold dMc. Thus, dMc also needs to be adapted over time to correct for large vari-401

ations in ’background’ incompleteness, such as those between (S2) and (S3), to mitigate402

the risk of over-interpreting some temporal variations. This observation has also been403

highlighted by several recent studies (e.g. Lippiello & Petrillo, 2024).404

These methods can be very efficient and fast but they use truncated datasets, which405

can result in bvalue estimations based on very few events for periods with low detectabil-406

ity. With our new transdimensional approach, bvalue and completeness are jointly inferred407

together with a probabilistic estimate of temporal changes from the entire dataset.408

We applied our method to the synthetic dataset and conducted 50 parallel rj-McMC409

explorations with different initialisations for T in order to efficiently explore the model410

space. We present the results derived from the final stack of posterior densities coming411

from the 50 runs, each encompassing 5000 proposed models of temporal discontinuities412

(Figure 5.C,D,E,F). In total, 250000 temporal models were proposed out of which ap-413

proximately 41800 were accepted upon completion. The six temporal discontinuities are414

well retrieved and clearly identified (Figure 5.C). Analysis of the number of discontinu-415

ities at each step indicates that the algorithm converged towards the correct value in less416

than 2000 iterations, even though all initialisations began with random values of k rang-417

ing from 4 to 12. A burn-in period of 1000 iterations has been set to disregard initial it-418

erations. The maximum number of discontinuities allowed was set to 40 and did not af-419

fect the random-walk. For the 50 runs, the mean acceptance rate is around 30% for the420

move cases and 10% for the birth and death cases. These values are consistent with ac-421

ceptance values obtained by other applications of rj-McMC algorithm (Gallagher et al.,422

2009).423

Our approach allows to display the temporal evolution of the bvalue of the Gutenberg-424

Richter law along with the two parameters describing the detectability (Figure 5.D,E,F).425

At each time-bin over a 100 grid, the full probability distribution of bvalue is the sum of426

all the marginal densities that have been accepted. For the three parameters, the prob-427
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ability distribution comprises the true value even for periods with low detectability (Fig-428

ure 5.D.E.F). Specifically, for period S2 containing 261 events, the bvalue estimated by429

the transdimensional approach between 1.05 and 1.0 is close to the true value 1.0 with430

a 68% confidence interval of ±0.1. As this period involves the fewest events, the rela-431

tive probability is the lowest. This confidence intervals narrows to ±0.02 for the period432

S3 containing 2538 events. Despite a large increase of detectability between these two433

periods, the bvalue remains stable. We demonstrate that the transdimensional framework434

retrieves the true values of the three parameters governing the frequency-magnitude dis-435

tribution of earthquakes over time for a synthetic case. This approach gives larger un-436

certainties compared to those proposed by classical methods, primarily because it ac-437

counts, in addition to the number of earthquakes used, for existing correlations between438

parameters that classical approaches fail to resolve.439

3 Application to a real earthquake catalog440

A significant challenge is thus to select a region where the bvalue and the complete-441

ness are homogeneous, and the Gutenberg-Richter law is valid for the chosen sub-dataset442

of earthquakes. The transdimensional approach presented here addresses this issue in443

time, yet the selection of a catalog with spatially homogeneous bvalue remains crucial to444

better understand the physical meaning of bvalue temporal variations.445

Another challenge addressed by the transdimensional approach is the temporal vari-446

ations in completeness magnitude, influenced by mainshock-aftershock sequences and sea-447

sonal variations due to anthropogenic or meteorological factors(e.g. Iwata, 2013). Here,448

we choose an earthquake catalog with expected variations in completeness to evaluate449

the approach’s efficiency and compare results with other methods.450

3.1 Data : Far-Western Nepal seismicity451

Our first application of the transdimensional approach to investigate bvalue vari-452

ations focus on the temporal evolution of seismicity in a very seismically active region453

of Nepal. We use the earthquake data collected during two years by the Himalayan Kar-454

nali Network (HiKNet), the first dense seismological network of 15 temporary stations455

deployed in far-western Nepal. This earthquake catalog is derived from two studies (Hoste456
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Figure 6. Far-western Nepal seismicity recorded during two years by the temporary seismo-

logical experiment of the Himalayan-Karnali network (HiKNet) (white triangles) and the perma-

nent seismological network of the National Earthquake Monitoring Research Center (NEMRC)

(black triangles). We use the earthquake catalog and focal mechanism from Laporte et al. (2021).

NK: North Karnali sector, SK: South Karnali sector. In this study, we focus our analysis on the

geographical subset represented by the inner red rectangle comprising 2593 events : the Bajhang

region (BAJ).

et al., 2018; Laporte et al., 2021) which focuses on the spatio-temporal analysis for seis-457

motectonic interpretation.458

In Nepal, the main feature of seismicity is a belt of intense microseismicity which459

is located at depth on the locked portion of the Main Himalayan Thrust (MHT), (e.g.460

Ader et al., 2012). The MHT is the main active thrust fault which accommodates most461

of the shortening between the Indian plate and the Tibetan plateau. The seismicity is462

interpreted as resulting from stress build-up on the locked portion of the MHT. It ex-463

hibits a multimodal behavior, generating intermediate earthquakes (M > 5) that par-464

tially rupture the MHT, as well as large (M > 7) and great earthquakes (M > 8) that465

may rupture several lateral segments of the MHT, sometimes up to the surface (Dal Zilio466

et al., 2019).467
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In the area of interest in this paper, the most recent great earthquake occurred in468

1505 A.D. according to historical records supported by paleoseismological evidence (Hossler469

et al., 2016; Riesner et al., 2021).470
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Figure 7. (A) Temporal distribution of magnitudes during two years of the HiKNet ex-

periment in the Bajhang region. The color scale is the same as Figure 6. The red curve is the

temporal evolution of the cumulative number of events. Horizontal lines correspond to station

availability. Blue shades are the usual monsoon periods in Nepal. (B) Frequency-magnitude dis-

tribution in normal (blue histograms) and logarithmic (orange curve) scale. The two histograms

are histograms for bins of 0.2 and 0.1 in magnitude, respectively.

Between December 2014 and September 2016, the temporary experiment recorded471

almost 4500 earthquakes in this region. The seismicity is structured into three seismic472

belts: one large belt in the westernmost part (BAJ) and two separate belts in the east473

(SK and NK) (Figure 6). Each belt contains several seismic clusters of different size and474

spatio-temporal behaviour. Most of them are located at mid-crustal depths (15−20km)475

close to mid-crustal structures such as the toe of mid-crustal ramps, which accumulate476

most of the interseismic strain on the fault. The geometry of the MHT fault is consid-477

ered to be the primary factor influencing microseismicity. The focal mechanisms of the478

largest earthquakes are consistent with thrust faulting.479

Facing challenges due to temporal variations of the detectability caused by station480

losses and monsoon periods, we chose this dataset to study temporal variations in bvalue481

using the transdimensional approach. In Nepal, the monsoon season typically spans from482

early June to September, peaking in July and August. During this period, the high-frequency483
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seismic noise increases, leading to fewer detected earthquakes. Additionally, in 2015, 9484

out of 24 instruments were successively disconnected by storms. These typical monsoon485

periods are highlighted in blue in Figure 7.A, along with the availability of the 24 instru-486

ments throughout the experiment487

To ensure spatial homogeneity of bvalue, we focused on a geographical region of 94km488

by 57km, corresponding to the seismicity of the western belt, which is the most instru-489

mented. 2593 earthquakes were recorded within this specific region. The cumulative num-490

ber of earthquakes reveals distinct periods of seismic activity (see Figure 7.A). Using the491

frequentist approach of Aki for a completeness magnitude of 1.5 on the full time period,492

we get a bvalue of 0.82±0.08 (Figure 7.B) consistent with the bvalueobtained in far-western493

Nepal and more generally in Central and Eastern Nepal (e.g. Laporte et al., 2021). This494

low bvalue is also consistent with the thrust-type faulting style (e.g. Schorlemmer et al.,495

2005).496

3.2 Results497

For this real application, we configure the rj-McMC algorithm to conduct 15,000498

iterations for each individual run. However, as for the synthetic case, we initiate 50 par-499

allel runs, totaling 750,000 models tested starting from distinct random seeds. For each500

of them, we burn 4,000 iterations and thin the chain by keeping only 1 out of 5 accepted501

models.502

The algorithm converges towards 9 temporal discontinuities (defined as being over503

a probability of 15%) after 5000 iterations (Figure 8.A). The total acceptance rate is 23%504

and is above 20% for the three case scenarios births/deaths/moves.505

Moreover, comparing the position of these discontinuities with the magnitude dis-506

tribution of the seismicity, we can see that these nine discontinuities are coincident with507

some specific time periods of the dataset. We interpret and discuss each of them with508

respect to the stacked marginal densities of probability for bvalue, µ and σ (Figure 8).509

• S1 corresponds to the time of the MLv 4.0 earthquake of 22 January 2015, located510

at the base of the mid-crustal ramp of the MHT and followed by an increased seis-511

mic rate of about 300 events occurrence in 9 days (Hoste-Colomer et al., 2018; La-512

porte et al., 2021). For this seismic crisis, characterised as a large seismic swarm513
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Figure 8. (A)Probability of temporal discontinuities at the completion of the rj-McMC al-

gorithm and the temporal distribution of magnitudes in the background. The color-scale is
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by Hoste-Colomer et al. (2018), the bvalue and the two detectability parameters514

increase suddenly and then return to their previous value.515

• S2 corresponds to the loss of three stations (ML04, SJ26 and GJRN)(Figure 8.C),516

two of which were sited in the considered region (Figure 6). The confidence in-517

terval for every parameter becomes wider which is in accordance with fewer events518

detected. Only µ and σ present a clear discontinuous change. Specifically, µ in-519

creases from 0.5 ± 0.1 to 1.3 ± 0.3, and σ from 0.25 ± 0.05 to 0.32 ± 0.1. The520

bvalue remains within the uncertainties of S1 while its uncertainty becomes larger.521

–24–



manuscript submitted to JGR: Solid Earth

• S3 corresponds to the loss of two stations in the center of the considered region522

(WA07 and CH06) (Figure 8). In the region, only 5 out of 9 stations are available523

during the monsoon period. Between S3 and S4, the monsoon periods starts and524

the µ parameter increases along with degradation in detectability, the σ param-525

eter is not affected as much as µ. The mean bvalue stays within the confidence in-526

terval of previous periods with a larger uncertainty. There is no statistical evidence527

of bvalue variations during the monsoon period.528

• S4 corresponds to a brutal improvement in the detectability. µ decreases from 1.6±529

0.2 to 1.0±0.2. This time likely corresponds to the early end of the monsoon pe-530

riod at the beginning of September 2015.531

• S5 Both detectability parameters come back to the pre-monsoon values with the532

return of all 6 lost stations in October 2015. The bvalue remains constant around533

0.85± 0.1 during that time with a narrower confidence interval.534

• S6 The density probability of bvalue has a significant decrease at the beginning of535

June 2016 from 0.85±0.1 to 0.7±0.1. This time also corresponds to the expected536

beginning of the monsoon period, µ increases significantly and σ decreases.537

• S7 corresponds to the onset of the second largest seismic crisis recorded in that538

region. On the 29th of June a MLv4.8 earthquake occurred and was followed by539

several aftershocks including two MLv > 4 earthquakes. It seems that after this540

crisis that lasted 12 days, the bvalue comes back to its value of 0.85±0.15. How-541

ever this variation is not statistically significant because the confidence interval542

also increases due to the decrease in detectability. In fact, the µ parameter describ-543

ing the mean of the detectability function keeps increasing in steps. One station544

(KS11) at 50 km from the area of interest is also interrupted.545

• S8 Another station from the area of interest becomes unavailable (CH06) and the546

confidence intervals become wider. bvalue and σ are constant during that period547

and approximately equal to the mean value they had during the two years 0.8 and548

0.25 for bvalue and σ respectively. The mean detectability µ seems to increase slightly549

but this increase is within the confidence interval. However this increase can be550

attested by the simultaneous widening of confidence intervals that might be due551

to fewer events detected during the monsoon.552

• S9 in September 2015 corresponds to the end of the experiment, uncertainties are553

becoming wider with the disconnection of the firsts temporary stations.554
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Looking back at these results, the analysis of temporal variations of bvalue (Fig-555

ure 8) shows that there is no statistical evidence of temporal variations during the two556

years of the temporary experiment at the exception of a short period preceding one seis-557

mic crisis (S6). The b-Bayesian approach recovers as well the large variations of back-558

ground detectability which can be explained by the loss of stations during summer 2015559

and by the higher seismic noise during the monsoon periods. In particular, the µ param-560

eter from the detectability function is the most sensitive to detectability changes and can561

be used as a proxy for deciphering detectability variations. This additional information,562

which is not given by traditional approaches, can be very useful for the characterization563

of the efficiency of a seismic network over time. Moreover, these large variations of de-564

tectability are taken into account in the Bayesian estimation of the bvalue and act in the565

spread of its uncertainties along time. When all stations of the temporary network were566

available, the 1σ uncertainty of the bvalue is reduced to ±0.05. The widening of the pos-567

terior density function during the monsoon periods shows that during these periods the568

information contained in this earthquake catalog is not good enough to decipher some569

seasonal variations of the bvalue even though it might exists. Outside the scope of this570

study, as the temporary network recorded data between 2014 and 2016, this particular571

sector of far-western Nepal has experienced 5 moderate (ML > 5) damaging earthquakes572

since 2022, while the temporary experiment recorded none in two years.573

4 Discussion and Perspectives574

4.1 Comparison between classical approaches575

Most of the time, temporal variations in bvalue have been studied by applying the576

maximum likelihood approach (Aki, 1965; Utsu, 1966; Y. Shi & Bolt, 1982) over slid-577

ing time windows (e.g. Nuannin et al., 2005; Cao & Gao, 2002; Nanjo et al., 2012; Gu-578

lia & Wiemer, 2019). These techniques are dependent on the accuracy of the estimation579

of the time variations of the completeness magnitude (e.g. Helmstetter et al., 2006; Woess-580

ner & Wiemer, 2005) (Figure 9.A). More recently, the b-positive approach introduced581

by Van der Elst (2021) has been shown to be insensitive to the short-term incomplete-582

ness coming from mainshock-aftershocks sequences. Both approaches are very efficient583

and do not require any prior information on the bvalue but they use a small part of the584

dataset only. The uncertainty in bvalue is often estimated using formulas from Aki (1965)585

or Utsu (1966) within the sliding window, or by employing the bootstrap method(e.g.586
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Woessner & Wiemer, 2005). Importantly, this uncertainty is consistently estimated in-587

dependently of the uncertainty associated with the completeness magnitude nor their588

correlation.589

Comparing the outcomes derived from traditional approaches with those obtained590

using our b-Bayesian method on the earthquake catalog of far-western Nepal reveals in-591

trinsic differences among these methodologies (Figure 9). Notably, both classical approaches592

exhibit sensitivity to the selection of the magnitude threshold (Mc or dMc), whereas the593

b-Bayesian method effectively captures the uncertainty arising from fluctuations in de-594

tectability. Our findings indicate that most bvalue variations shown by the classical moving-595

window techniques fall within the uncertainties accounted for by the b-Bayesian approach.596

These small-scale variations can sometimes lead to over-interpretations of the tempo-597

ral variations in bvalue.598
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Figure 9. (A) Comparison of the temporal variations of bvalue obtained using the b-Bayesian

approach for far-western Nepal in red-shaded and the frequentist approach from Aki applied on

a moving-window of 500 events as the 4 bold lines, depending on 4 values of completeness mag-

nitude Mc. (B) Same as (A) but compared to the b-positive approach with 4 different values for

dMc. For both sub-figures, the legend gives the mean number of magnitudes kept for the bvalue

estimates in the windows, depending on the magnitude cut-off.

Despite using a moving-window of 500 events, this number is significantly reduced599

by truncation at Mc (up to only 17% of magnitudes retained for Aki’s approach with Mc =600

1.6) or by using only positive magnitude differences for the b-positive method (> 50%)601
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(Figure 9), while the b-Bayesian approach does not require any truncation and uses 100%602

of all the available data. Moreover, b-Bayesian proves to be the only tool for decipher-603

ing jointly the variations in detectability and can be used as a preliminary step before604

applying classical approaches to ensure that detectability is adequately considered.605

In Table 2, we propose a comparison between the two classical approaches presented606

in this paper and the novel b-Bayesian approach. In conclusion, b-Bayesian proposes to607

use all the data available to invert for the temporal variations of three parameters re-608

lated to the frequency-magnitude distribution. It uses Bayesian inference to capture the609

full density distributions and does not require any parametrization. This can be done610

at the cost of the computational time which is currently being reduced.611

Aki (1965) b-Positive (van der Elst., 2021) b-Bayesian (this study)

Inversion param. bvalue bvalue bvalue, µ, σ

Approach type MLE MLE Bayesian

Uncertainties estimates MLE Bootstrap Full PDF

Truncation Mc (∗) dMc None

Used Data < 40% < 50% 100%

Temporal Moving-window Moving-window Probabilistic

Comp. Time Immediate (∗∗) Immediate (∗∗) Long (∗∗∗)

Table 2. Table of comparison between the two classical approaches from Aki (1965), van der

Elst (2021) and b-Bayesian. (∗) arbitrary (∗∗) for one parametrization of Mc/dMc and choice of

moving-window (∗∗∗) no arbitrary parametrization

612

4.2 Perspectives613

The frequency-magnitude distribution of earthquakes varies temporally and spa-614

tially. At the regional scale, bvalue is thought to reflect the faulting style and the evo-615

lution of the state of stress on the faults (e.g. Schorlemmer et al., 2005; Gulia & Wiemer,616

2019). This is also supported by experimental studies on the micro-failure (e.g. Scholz,617

1968, 2015). Consequently, numerous studies have focused on monitoring the bvalue at618

regional scales to discriminate foreshock and mainshocks sequences (e.g. Gulia et al., 2020;619

–28–



manuscript submitted to JGR: Solid Earth

Van der Elst, 2021). At the local scale, the bvalue has also been proven valuable for de-620

scribing the spatio-temporal behavior of seismic clusters (e.g. Farrell et al., 2009; Gui621

et al., 2020; Herrmann et al., 2022) or characterizing swarm-like sequences in relation622

to fluid-pressure (e.g. Hainzl & Fischer, 2002; Shelly et al., 2016; De Barros et al., 2019).623

We are now looking forward to applying b-Bayesian in these different contexts to dis-624

cuss our results in comparison with previous studies and infer valuable information for625

characterizing seismic sequences.626

The b-Bayesian method addresses temporal variations in the bvalue using Bayesian627

inference. However, these variations are generally considered to be secondary compared628

to spatial variations (Wiemer & Wyss, 1997; Öncel & Wyss, 2000). Currently, both the629

b-Bayesian and classical approaches require a spatial subset of earthquakes with a ho-630

mogeneous bvalue, making it challenging to determine the adequacy of the dataset. Sim-631

ilar to the inversion of seismic velocities in tomography (e.g. Bodin & Sambridge, 2009),632

adapting the transdimensional approach to account for 2D spatial partitions could en-633

able the capture of both temporal and spatial variations in the frequency-magnitude dis-634

tribution. This is a future development of the method.635

5 Appendix636

5.1 Method : the Markov-chain Monte-Carlo637

The Markov-chain is initialised by a randomized choice of a temporal model T (c) =638

[T
(c)
1 , T

(c)
2 , . . . T

(c)
k ] with a number of discontinuities k(c) drawn between two values kmin639

and kmax. In practice, temporal discontinuities are considered as floating values in the640

range between min(tobs) and max(tobs). After this initialisation, at each iteration of the641

reversible-jump algorithm a new temporal model is proposed by making a random choice642

among three possibilities :643

• (i) a death of a random temporal discontinuity T
(p)
j . Then, the proposed dimen-644

sion is k(p) = k(c) − 1.645

• (ii) a birth of a random temporal discontinuity T
(p)
j . Then, the proposed dimen-646

sion is k(p) = k(c) + 1.647

• (iii) a move of a random temporal discontinuity T
(p)
j around its previous location.648

Then the proposed dimension remains k(p) = k(c).649
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Each proposal (birth/death/move) has the same uniform probability of being drawn.650

For the moves, we randomly draw a time offset δt from a normal distribution around the651

previous time of a random time discontinuity of the current model. The standard de-652

viation σδt of this normal distribution controls the efficiency of the exploration. A large653

standard deviation will produce large jumps with many rejected models and poor pre-654

cision while a small standard deviation will produce very similar models and accept most655

of them. We follow the approach of (Gallagher et al., 2009) which tunes the value of σδt656

in order to get close a 20% acceptance rate. Every five hundred iterations, we monitor657

the acceptance rate and increase or decrease the σδt linearly with the deviation of the658

acceptance rate from the 20%.659

The acceptance criterion is computed according to the Metropolis-Hastings rule660

in order to guide the chain towards the target distribution. Its general form for trans-661

dimensional functions is written as follows :662

α = min(1, prior ratio× likelihood ratio× proposal ratio× |J |) (27)

such as :663

α = min(1,
p(T (p))

p(T (c))
× p(d|T (p))

p(d|T (c))
× q(T (c)|T (p))

q(T (p)|T (c))
× |J |) (28)

where |J | is the Jacobian of the transformation from the current model to the pro-664

posal and can be shown as equal to 1 (e.g. Gallagher et al., 2009; Bodin & Sambridge,665

2009). For moves of discontinuities, the dimension remains fixed, proposals are symmet-666

ric, and the prior ratio is one. The acceptance criterium is simply given by the usual Metropo-667

lis criterion :668

α = min(1,
p(d|T (p))

p(d|T (q))
) (29)

For birth proposals, we randomly draw the location of a new discontinuity from the prior669

distribution. In this way, the prior and proposal ratios cancel out for birth and death670

steps, and thus the acceptance criterion (??) also conveniently becomes the usual Metropo-671

lis criterion.672
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6 Open Research673

Codes of the b-Bayesian will be made available on github upon publication. The674

earthquake catalog of far-western Nepal used in Section 3 is available in Supplementary675

Material of Laporte et al. (2021).676
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