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S U M M A R Y 

Earthquake hypocentres are routinely obtained by a common inversion problem of P - and 

S -phase arri v als observed on a seismolo gical network. Improving our understanding of the 
uncertainties associated with the hypocentral parameters is crucial for reliable seismological 
analysis, understanding of tectonic processes and seismic hazard assessment. Ho wever , current 
methods often overlook uncertainties in velocity models and variable trade-offs during inver- 
sion. Here, we propose to unravel the effects of the main sources of uncertainty in the location 

process using techniques derived from the Global Sensitivity Analysis (GSA) framework. 
These techniques provide a quantification of the effects of selected variables on the variance 
of the earthquake location using an iterative model that challenges the inversion scheme. 
Specifically, we consider the main and combined effects of (1) variable network geometry, 
(2) the presence of errors in the analyst’s observations and (3) errors in velocity parameters 
from a 1-D velocity model. These multiple sources of uncertainty are described by a dozen 

of random variables in our model. Using a Monte Carlo sampling approach, we explore the 
model configurations and analyse the differences between the initial reference location and 

100 000 resulting hypocentral locations. The GSA approach using Sobol’s variance decom- 
position allows us to quantify the relative importance of our choice of variables. It highlights 
the critical importance of the velocity model approximation and provides a new objective and 

quantitative insight into understanding the sources of uncertainty in the inversion process. 

Key words: Monte Carlo methods; Spatial analysis; Statistical methods; Earthquake 
parametrization. 
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1  I N T RO D U C T I O N  

Quantification of uncertainties in earthquake location, especially 
with respect to hypocentral depth, is necessary for a reliable analy- 
sis of the spatiotemporal properties of the seismicity and associated 
seismotectonic interpretation (e.g. Kagan et al. 2003 ; Husen & 

Hardebeck 2010 ; Zaliapin & Ben-Zion. 2015 ; Turquet et al. 2019 ). 
This issue is often raised in deciphering seismicity source mech- 
anisms (e.g. Mousavi et al. 2023 ) as well as in the monitoring 
of induced seismicity (e.g. Phillips et al. 2000 ; Diehl et al. 2017 ; 
Garcia-Aristizabal et al. 2020 ). For natural seismicity, the quality 
of the earthquake catalogue, including the accuracy and precision 
of the hypocentral location of earthquakes used in the construc- 
tion of regional seismotectonic models, has been shown to have 
an impact on the computation of the probabilistic seismic hazard 
assessment (e.g. Beauval & Scotti. 2004 ; Allen et al. 2020 ; Gounon 
et al. 2022 ). The seismogenic thickness, which can be constrained 
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by the distribution of seismicity at depth, is also a critical factor 
in determining the maximum magnitude of earthquakes in a given 
region, which is essential for understanding the seismic cycle (e.g. 
Nazareth & Hauksson 2004 ; Chiarabba & De Gori 2016 ; Wu et al. 
2017 ; Grev eme yer et al. 2019 ; Petrucelli et al. 2019 ; Zuza & Cao 
2020 ). 

In practice, regional earthquake locations are based on a nonlinear 
inversion problem that aims to estimate the hypocentral parameters 
(epicentral location, depth, origin time), assuming others are known 
(velocity model parameters), from distant observations (e.g. Taran- 
tola. 2005 ). These parameters, as well as the observ ations (usuall y 
direct P - and S -wave arrival times picked up on a given regional 
seismic network), inherently possess uncertainties, either aleatory 
or epistemic. 

Among these uncertainties, the uncertainty associated with the 
measurement of P - and S -phase arri v al times (e.g. Gomberg et al. 
1990 ; Billings & Sambridge. 1994 ; Phillips et al. 2000 ), in addition 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
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o the uncertainty in their traveltime estimate from an approximated
rustal velocity model, has been shown in several studies to have
 significant impact on the accuracy of earthquake location (e.g.
oble et al. 2014 ; Pavlis 1986 ; Billings & Sambridge. 1994 ; Dreger

t al. 1998 ; Bond ár et al. 2004 ; Michelini & Lomax 2004 ). This has
ed them to propose empirical criteria for identifying well-located
arthquakes (e.g. Gomberg et al. 1990 ; Bondar & McLaughlin.
009 ) when the uncertainties gi ven b y the location algorithms are
ot fully realistic (e.g. Boyd & Snoke. 1984 ). 

The quantification of uncertainties is a first step to understand
he variability of the hypocentral parameters. It can be realized by
ropagating known uncertainties in the earthquake location prob-
em (e.g. Billings & Sambridge 1994 ; Gesret et al. 2015 ; Mousavi
t al. 2023 ). Tarantola & Valette ( 1982 ) have introduced the way
f representing the parameter uncertainties as a posterior density
unction assuming linearly independent error terms following a
aussian distribution. Bayesian methods are now commonly used

n seismology to represent the full posterior density distribution of
he source parameters ( x , y , z , t ) including their uncertainties. How-
ver, these classical methods do not provide any insight into how
his uncertainty associated with the hypocentral parameters can be
pportioned to the effects of the different sources of uncertainty in
he inputs or the effects of their interactions in the inversion process.

In this study, we use the framework of Global Sensiti vity Anal ysis
GSA) to categorise and quantify the independent and correlated ef-
ects of uncertain parameters and different network configurations
hat may affect the inverse problem of earthquake location. In-
eed, GSA is an important tool for understanding how the output
f a model varies in response to source uncertainties in its inputs
Saltelli. 2002 ; Saltelli et al. 2010 ). The input parameters (data un-
er tainties, velocity model uncer tainties) are defined by a range of
alues that can represent either knowledge or lack of knowledge.
ensiti vity anal ysis helps to decipher which parameters have the
ost influence on the outputs and which parameters have so little

nfluence that they can be neglected. It is thus an ef fecti ve tool for
educing uncertainty by better understanding the unknown param-
ters and their influence in the model (e.g. Sobol 1993 ; Homma &
altelli 1996 ). It is a well-established technique in environmental
cience, engineering, finance and epidemiology (e.g. Borras-Mora
t al. 2021 ; Edeling et al. 2021 ) because of its ability to deal with
onlinearity in complex models with many input parameters (e.g.
omma & Saltelli. 1996 ). It has been used to e v aluate important
easures in seismic risk, which is affected by both random pa-

ameters and uncertain models (Rohmer & Foerster. 2011 ; Gehl
t al. 2013 ; Rohmer. 2015 ; Di Maio et al. 2023 ). Ho wever , these
pproaches are not yet widely used in seismology (e.g. Franczyk.
019 ) due to the significant computational resources they require
nd their limited applicability to deterministic problems (a unique
olution for the same set of parameters). The classical trade-off be-
ween the depth and the origin-time makes the earthquake location
roblem non-deterministic. 

This paper presents a first application of a GSA method applied
o the assessment of earthquake location uncertainties at the local
cale. We propose a simplified model that aims to re-locate a seismic
vent sited in a 1-D crustal velocity model and recorded by a local
etwork of 10 seismological stations. We use common earthquake
ocation algorithms that provide a unique solution for the same in-
ut parameters m . The model m = ( random input variables ) passes
hrough the forward function g( m ) (starting from the reference lo-
ation and returns P- and S -phase arri v al times at every station)
nd the inverse function g −1 ( m ) (starting from the P and S arri v al
imes at every station and returns the new location) adding rele v ant
ncertainties at each step. In the first section, we describe the frame-
ork of the sensitivity analysis, which includes the description of

he method, the design of the deterministic model and the selection
f the input random variable (RV) that are expected to add uncer-
ainty in the output. The independent and correlated effects of each
nput RV, representing measurement errors, velocity model errors
nd variation in the seismological network geometry, are analysed
nd discussed. We then discuss the comparison of the importance
easures of these three families of RV for two models using two
idely used earthquake location algorithms, respectively. 

 M E T H O D O L O G Y  

.1. Variance decomposition method 

mong the many tools proposed in GSA, we focus on the variance
ecomposition method introduced and developed by Sobol ( 1993 ,
001) , which is widely used in GSA because of its robustness (e.g.
altelli et al. 2010 ). The method decomposes the variance of model
utputs into several fractions attributable to each independent in-
ut RV and correlations between groups of inputs. Anal yticall y, it
orresponds to a decomposition of the model function f into a
um of integrals of increasing dimension. The method interrogates
he model in a probabilistic manner using a Monte Carlo approach.
t each iteration, it takes as input a deterministic set of values

andomly drawn from their prior distribution (which, in our study,
an be uniform or Gaussian). The non-dimensional Sobol indices
ummarise the results of the variance decomposition method in a
imple way. 

Considering a random input variable X j , the first-order Sobol
ndex S 1 j characterizes the proportion of the variance of the model
utput Z that arises solely from the effect of X j when it varies over
ts domain of uncertainty or variability. This quantitative output is
lso known as the ‘main effect’ and is expressed as: 

S 1 j = 

Var 
[
E 

(
Z | X j 

)]

Var ( Z 

) 
, 

AR 

( Z 

) : total variance of Z , 

E 

(
Z | X j 

)
: e xpectanc y of Z knowing X j . 

In addition, second-order Sobol indices S j i quantify the level of
nteractions between couples of variables ( X j , X i ) . Higher-order
ndices can also be computed to define all possible interactions
etween X j and sets of variables of increasing dimensions. Our
ocus is on determining the main effect of X j and the total Sobol
ndex S T j , which describes all effects of variable X j on Z, including
he effects due to complex interactions. The total effect provides the
roportion of the variance of Z that can be fully attributed to X j . 

First-order and total Sobol indices can be estimated using Monte
arlo-based sampling. In this paper, we use a quasi-Monte Carlo

ampling method, which consists in selecting a number of represen-
ative sample sets (input scenarios), described as low-discrepancy
amples that achieve a near uniformity over the input space � (e.g.
obol. 2001 ; Saltelli et al. 2010 ; Campolongo et al. 2011 ). Con-
idering k random variables that are distributed in the space � of
imension N , a robust estimation of the main and total effects re-
uires a minimum number of N ( k + 2) iterations. Since N can be
ery large, the computational cost remains very high. Some re-
ent studies have proposed to use polynomial chaos expansion or
achine-learning techniques in order to reduce the computational

ost of the screening process (e.g. Lucay et al. 2022 ). Here, we
hoose to first test our experimental design by a quick and simple
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Figure 1. Scheme of the forward–inverse relocation function using random input variables for the network configuration, for velocity model errors and for 
errors in arri v al times. 

 

(Tarantola & Valette 1982 ). 
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sensitivity measure of a ‘one at a time’ experiment using the ele- 
mentary effects screening method (Morris. 1991 ; Nabi et al. 2021 ). 
The method and its results are described in the Supporting Informa- 
tion ( Sup.1 ). We then apply the Sobol method in a second step. We 
then perform the Sobol analysis on an N = 2 13 = 8192 randomly 
drawn samples for each input. We generate our sample sets over the 
input space � using the Saltelli extension of the Sobol sequence 
(Campolongo et al. 2011 ). To compute second-order Sobol indices 
in addition to the main and total Sobol indices, we need N (2 k + 2) 
iterations to sample the space �, corresponding to approximately 
245 000 experiences of the model. 

2.2. Experimental design 

Basicall y, sensiti vity anal ysis is based on a model, its inputs and its 
outputs. To apply this method, we have developed a deterministic 
model that represents an earthquake relocation function, taking into 
account multiple input random variables X j regrouped into three 
families, including varying seismological network geometr y, var y- 
ing errors in the velocity model approximation and varying errors 
for P and S arri v al-time observ ations. 

Our deterministic model is constructed to relocate a synthetic 
earthquake sited in a reference 1-D crustal velocity model and de- 
tected by a local network of 10 stations. We fix the reference location 
of this earthquake at a depth of 25 km. The largest station–event 
distance is 150 km, the synthetic event can thus be referred to any 
M > 2 earthquake. The model outputs the hypocentral deviation and 
the difference in origin time ( dx , dy , d z, d t) resulting from changes 
in the set of values for the input variables. To explore changes in 
the network geometry, the model solves both the forward problem 

to compute the theoretical P and S arri v al times at each station in 
the network, and the inverse problem using a standard procedure 
and earthquake location algorithm. Each step of the model reloca- 
tion function is schematically described in Fig. 1 . There are five 
sequential steps: 

(i) Generation of a network geometry using network-defined ran- 
dom variables (RV netw, Fig. 1 , see Section 2.3.1); 
(ii) Resolution of the forward problem for the fixed seismological 
network by computing theoretical P and S seismic wave arrival times 
at each station in the local network. We use the program Time2Eq 
from the NonLinLoc earthquake location algorithm, which com- 
putes theoretical traveltimes from a synthetic source and seismic 
stations located on a 3-D grid. The grid is centred at (0,0), with a 
width of 200 km in ( x , y ) and 100 km in depth, and a distance of
500 m between nodes; 

(iii) Adding errors, from observ ation v ariab les (RV obs, F ig. 1 , 
see section 2.3.2 ), to the theoretical arri v al times estimated in step 
2 to simulate observed P - and S -wave arri v als that may have been 
incorrectly picked; 

(iv) Calculation of the approximate 1-D velocity model with ran- 
dom errors in the velocities as well as in the layer depth from the 
random velocity variables. (RV vel, Fig. 1 , see Section 2.3.3); 

(v) Resolution of the inverse problem for the defined net- 
work, the simulated observed arri v al times and the new velocity 
model. 

The sensitivity analysis is performed twice using two different 
inversion methods: Geiger iterative linearization using the Hypo71 
algorithm (Lee & Lahr. 1972 ) and grid-search nonlinear inversion 
using NonLinLoc algorithm (Lomax et al. 2000 ). We refer to M 1 

and M 2 as the two models using the NonLinLoc and Hypo71 inver- 
sion algorithms, respecti vel y. The goal is to compare their sensitivity 
regarding the random variables. One important difference between 
the two inversion methods is that Hypo71 needs an initial location 
from which the algorithm will attempt to converge towards the op- 
timal location. The convergence is therefore highly dependent on 
this initial location; for this study, we choose an initial depth of 
5 km. The observations are weighted according to the distance and 
phase type. To completely eliminate the dependence on the initial 
location, the same sensitivity analysis is performed using NonLin- 
Loc grid search algorithm, using the grid already defined in step 
2 and a grid-search optimization using the Octree algorithm. The 
grid inversion is performed using the Tarantola and Valette method 

art/ggae093_f1.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae093#supplementary-data
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Figure 2. (a) Configuration scheme of a seismic network of 10 stations (stations are shown as triangles) around the reference event (central star) defined by the 
four fixed random variables. G1: primary azimuthal gap; Dmoy: average source–station distance; Dmin: minimum source–station distance; Emoy: deviation 
from the average distance. (b) Representation of the station error terms for picking arri v al times. Red badges correspond to a positive coefficient (larger picking 
error) BP i or BS i for the P or S phase, respecti vel y. Blue badges correspond to a negative coefficient (smaller picking error). Each station is associated with a 
probability of observing an S phase: TS i . 

Table 1 Definition of the azimuth and the source–station distance according to the values of the random variables (in bold) 
and the station number i. 

Station 1 2 3 i = 4 to n 

Azimuth ( ◦N) source/station 0 G1 G 1 + 

( 360 −G 1 ) 
n −1 G 1 + ( i − 2 ) . ( 360 −G 1 ) 

n −1 
Distance (km) source/station Dmoy + A1 Emoy Dmoy + A2 Emoy Dmin Dmoy + A i Emoy 
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.3 Definition of random v ariab les 

SA requires the selection of independent RV inputs, which we
roup into the three families (network, observations and velocities).
n addition, the problem must remain deterministic, with a unique
olution per set of inputs. The input variables take values from either
 normal distribution, denoted as N ( μ, σ ) , or a uniform distribution,
enoted as U ( [ i n f, s up ] ) . 

.3.1 Random variables for the network geometry 

wo issues arise when defining random input variables for the net-
ork (RV netw). First, many networks can satisfy the standard
riteria used in the literature to characterize network geometry, in-
luding the number of stations, primary and secondary azimuthal
aps, average and minimum source–station distances and intersta-
ion distances (e.g. Bond àr et al. 2004 ). Secondly, these network
 ariables are highl y interrelated, as the v alue of a secondary az-
muthal gap depends on the primary azimuthal gap, whose limits
epend on the number of stations, making it difficult to satisfy the
ondition of independent variables needed for a proper analysis. To
vercome these challenges, an integrated strategy is adopted that al-
ows only one network configuration from the values of the selected
etwork inputs RV. In this study, the number of stations per simu-
ation is fixed, and the secondary azimuthal gap is not investigated.
herefore, only four independent network variables are considered
Fig. 2 a): 

• G1, the primary azimuthal gap (in degrees relative to geo-
 raphic nor th); 
• Dmin, the distance to the nearest station (in km); 
• Dmoy, the average distance between stations (in km); 
• Emoy, the deviation from the average distance that intro-

uces controlled heterogeneity in the distances, following a scheme
A1,A2,. . . ,An] with randomly selected A i (A i = 1, -1) by an
quiprobable draw prior to the analysis. 

The network defined by these few variables corresponds to a
nique configuration if the stations are placed in accordance with
he conditions presented in Table 1 . 

The generated networks do not explore the effect of the secondary
zimuthal gap or the distance between stations nor do they explore
he full set of possible local network geometries to characterize
he source. Ho wever , they are constructed to be representative of a
arge number of networks or parts of networks in densely covered
egions (Europe, America, Japan. . . ). The maximum source–station
istance of 150 km which we allow corresponds to the approximate
aximum detection distance of Pg and Sg wa ves (Crotw ell et al.

999 ; Diehl et al. 2021 ). We exclude seismic phases with travel
aths that are not direct (Pn, Sn). 

art/ggae093_f2.eps
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Table 2 Distribution laws for the random variables characterizing the net- 
work geometry. 

RV G1 Dmin Dmoy Emoy 

Law U([ 360 /nsta ; 270]) U([2 ; 40]) U([61 ; 125]) U([0 ; 20]) 
Unit Deg Km Km Km 
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Since the number of stations n is fixed before the analysis, the 
minimum azimuthal gap of the simulation is G1 min = 360 /n . We 
limit the maximum azimuthal gap to G1 max = 270 ◦ in order to avoid 
considering configurations where the network geometry is too de- 
graded for which the inversion b y iterati ve linearized methods may 
not provide a solution. For the simulations, the primary azimuthal 
gap is al wa ys placed in the nor theaster n quadrant and each station is 
placed with an increasing azimuth �az = 

360 −G 1 
n −1 so as to be e venl y 

distributed. 
We set the distance bounds of our model variables Dmin, Dmoy 

and Emoy consistent with the Hypo71 parameters Xnear and Xfar, 
which define the minimum and maximum distances at which ob- 
servations are accepted and rejected, respectively, in the Hypo71 
inversion. The weight assigned to P and S observations decreases 
linearly with the distance to the source between Xnear and Xfar. To 
ensure that our nearest station is al wa ys within the Xnear distance 
and that all other stations are within the Xfar distance, we choose 
our minimum and maximum variables to satisfy the following as- 
sumptions: 

(i) Max ( Dmin ) ≤ Xnear 
(ii) Min ( Dmin ) > 0 
(iii) Max ( Dmoy ) + Max ( Emoy ) ≤ Xfar 
(iv) Min ( Dmoy ) − Max ( Emoy ) > Max ( Dmin ) 

The range of values and the choice of distributions are described 
in Table 2 . 

2.3.2 Random variables for P and S observations 

Uncertainties in P - and S -w ave arri v al times can be represented by 
a random error term around the theoretical arri v als (e.g. Diehl et al. 
2009 ; Husen & Hardebeck. 2010 ; Retailleau et al. 2022 ). Ideally, 
this error should be estimated independently for each observation, 
which greatly increases the number of random variables in the anal- 
ysis (20 error terms for 10 stations). To reduce the computational 
cost, we limit the number of random variables to common errors 
errP and errS for all stations. 

We added fixed additional error terms at each station for P -phase 
picks (BP1, . . . BP10) and S -phase picks (BS1, . . . BS10). The 
station picking error is the combination of the common error errP 

and the additional error term. The coefficients BPi and BSi were 
chosen randomly before the simulation, from a uniform distribution 
between 0.8 and 1.2, in order to change the picking errors of the 
stations to a maximum of ±20%. These error terms can be positive 
and represent an increase of the common picking error (low SNR at 
the station) or ne gativ e (high SNR at the station). The signs of BS i 
for each station are represented in blue or red badges respecti vel y 
in Fig. 2 (b). 

In addition, in seismology, it has been proposed that the hypocen- 
tral depth of an earthquake can be particularly well constrained by 
the S –P difference between arrival times (e.g. Uhrammer. 1982 ). 
In practice, it is not al wa ys easy to pick S -w ave arri v als on a seis-
mogram which may be hidden in the P -wave energy or not well 
recorded at stations with only a vertical component. Therefore, not 
all stations may provide an S -phase pick. 
To represent this difference in the number of S -phase picks from 

one simulation to another, we define a random variable associated 
with the number of S -phases: n S . The number of S phase picks 
varies from 1 to 10. Each station is associated with a higher or lower 
probability of picking an S -wave defined by T Si , which is defined 
for each station before the analysis. This station characteristic value 
is between 0.5 and 1 and all values are evenly distributed according 
to the number n of stations (Fig. 2 b). The condition of having 
an S -phase pick is the combination of the RV n S and the station 
probability T Si . 

S condition : n S .T Si ≥ 0 . 5 , 

where n S is uniformly drawn between 0.5 and 1 so that: 

(i) If n S = 1 , the condition of S is validated for all stations. 
(ii) If n S = 0 . 5 , the nearest station which has a characteristic 

value of 1 will validate the condition of S . 
(iii) If 0 . 5 ≤ n S ≤ 1 , the number of observations of S increases 

linearly with n S . 

Thus, five independent variables characterizing errors of obser- 
vations in the seismogram are defined for the model (Table 3 ): 

• ErrP: average error on the observation of P -wave 
• ErrS: average error on the observation of the S -wave 
• Er rPc: er ror on the P -w ave observ ation at the nearest station 
• Er rSc: er ror on the S -w ave observ ation at the nearest station 
• nS: condition of S -wave observation 

We sample the errors of the normal distributions Gp and Gs 
centred on 0 with a standard deviation of 0.05 s for the errors 
of the P -wave arrivals and 0.15 s for the errors of the S -wave 
arri v als. These v alues have been estimated b y comparing se veral 
manual and automatic pickings of P and S wa ves in Ma yotte, without 
considering misidentifications for seismic phases, which have a 
lower probability of occurrence in seismic bulletins (Retailleau et al. 
2022 ). 

2.3.3 Random variables for the velocity model 

The uncertainty arising from the poor approximation of the crustal 
velocity model is one of the main issues in quantifying uncertainties 
in the earthquake location problem since some heterogeneities or lo- 
cal variations can be missed in the 1-D approximation. These errors 
are very difficult to identify and therefore to quantify. The P - and 
S -wav e v elocities can be influenced b y se veral factors, including the 
density and elastic parameters of the crustal lay er, w hich in turn are 
determined by the lithology and pressure–temperature conditions. 
On the other hand, the Vp / Vs ratio is influenced by Poisson’s ra- 
tio, which is related to physical processes (Eberhart-Phillips et al. 
2017 ). 

Some earthquake location algorithms now employ 3-D velocity 
models that better capture the spatial heterogeneities of seismic 
phase velocities in the crust (e.g. Lomax et al. 2000 ; Diehl et al. 
2021 ). Ho wever , to apply our model to a 3-D velocity grid, veloc- 
ity errors should also be estimated independently at each node of 
the grid for the P -wave velocity and for the Vp/Vs ratio. In this 
study, we choose to represent a classical location problem using 
a 1-D reference velocity model with three horizontal layers. The 
model is based on a continental crust with the Moho at 55 km and 
the mid-crustal layer at 20 km. The average Vp/Vs ratio for sedi- 
mentary layers (1.73) and typical P -wave velocities for continental 
crust are used. To derive an approximate model for each inversion, 
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Table 3 Distribution laws for the random variables characterizing P - and S -wave 
observations. 

VA ErrP ErrS ErrPc ErrSc nS 

Law N(0 ; 0.05) N(0 ; 0.15) N(0 ; 0.05) N(0 ; 0.15) U([0.5 ; 1]) 
Units s s s s s 
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e consider five independent random variables representing errors
ssociated with the reference model. 

• Vp1: error on the P -wave velocity in the layer 1 
• Vp2: error on the P -wave velocity in the layer 2 
• Vp3: error on the P -wave velocity in the layer 3 
• Vp/Vs: error on the Vp/Vs ratio (identical for all layers) 
• H1: thickness of the layer 1 

In order to obtain a realistic velocity model even after perturbing
he reference model, we impose that the velocity gradient between
ayers 2 and 3 is suf ficientl y steep and that the P -wave velocity
l wa ys increases with depth: 

(i) Realistic boundary condition for the Moho: 

V P2 ≤ 6 . 9 km s −1 and V P3 ≥ 7 . 6 km s −1 

(ii) Boundary condition La yer 1/La yer 2: V P1 ≤ 5 . 9 km s −1 ≤
 P2 

(iii) Boundary condition Layer 0/Layer 1: V P0 ≤ 4 . 9 km s −1 

The scheme for building the (approximate) velocity model is
hown in Fig. 3 and the probability distributions of RV velocities in
able 4 . The boundaries and standard deviation values are chosen
y considering large but likely variations of the Vp velocities and
p/Vs ratio from earthquake tomographic models (e.g. Paul et al.
001 ; Chevrot et al. 2022 ). 

 R E S U LT S  O F  T H E  G L O B A L  

E N S I T I V I T Y  A NA LY S I S  

.1 Variations of the model outputs 

s presented in Fig. 1 , the model outputs the difference between
he reference point-source parameter and its relocation: 

x i = x 0 − x i ; dy i = y 0 − y i ; dz i = z 0 − z i ; dt i = t 0 − t i 

epresenting differences in the x- and y -axes, depth as well as the
rigin time, respecti vel y. In addition, we also look at the v ariations
f the root-mean-square (RMS) residuals to better understand the
elation between the RMS, which is sometimes used as a criterion
or location accuracy, and the actual uncertainty of the solution.
here is as many solutions as sets of inputs tested by the Monte
arlo sampling, thus we consider the variations within the 245 000

olutions. 
We first look at the variations of the model M 1 outputs indi-

idually before looking at their variance decomposition. Pair-wise
elationships between every M 1 outputs are shown in Fig. 4 . In the
gure, we visually separate the solutions between those with high
rigin time errors ( dt > 0.4 s in orange) and those with low errors
n order to highlight the trade-off between hypocentral depth errors
 dz) and origin-time errors ( dt) (Fig. 4 . D3). For the three location
arameters ( dx , dy , dz), we plot the tolerance ellipse at 1 σ (68 per
ent), 2 σ (95 per cent) and 3 σ (99.7 per cent) from the covariance
atrixes. The 68 per cent confidence interval is 80 and 200 m for
he dx and dy errors and 4.2 km for the depth error for the model
M 1 . With very low occurrences, some experiments of the model M 1 

roduced depth errors up to ±18 km. 
F rom F ig. 4 , it can be seen that large depth errors ( dz > 7 km )
ostly coincide with large origin-time errors ( dt > 0 . 4 s). This

bservation cannot be extended to epicentral ( dx , dy ) errors which
re more randomly distributed with respect to the other outputs.
oreover, the epicentral errors are very small ( < 2 km) compared to

he depth errors. Fig. 4 also highlights that, for our model design, the
MS values of NonLinLoc do not exceed 0.3 s while the dt errors

each ±2 s with a standard deviation of ±0.66 s. Thus, the RMS
oes not correct for more than 10 per cent of dt errors. The RMS
alue takes into account the errors in the observations, but it cannot
epresent errors due to a bad approximation of the velocity model.
his has been pointed out for other linearized inversions, such as
entroid moment tensor inversions (e.g. Valentine & Trampert 2012 ;
ejrani et al. 2017 ; Vasyura-Bathke et al. 2021 ). Therefore, it should
ot be the only criterion used to characterize the location accuracy
f a NonLinLoc inversion. 

Much larger epicentral errors of 4.6 and 3.8 km are obtained
ith the inversion using the Hypo71 algorithm. The 68 per cent
z standard deviation is within the same order of ±4.9 km, but

he depth errors distribution does not follow a strictly Gaussian
istribution with a tendency to make the depth more superficial
closer to the initial depth of the in version). Ho wever , the dt error
hows a standard deviation of ±0.6 s slightly lower than for the
onLinLoc inversion and probably better corrected by the RMS

hat has a much larger distribution with a standard deviation of 1.3 s
hich is a large value for an earthquake catalogue. For the Hypo71

nversion, results of the variations of the model M 2 outputs are
resented in Supplementary Materials ( Sup.2 ). The figure shows
hat the large errors in epicentral locations are linearly correlated
ith each other’s as well as with the depth error dz and the dt error.
hus, the trade-off problem is shared between all source parameters
nd large depth errors are not only explained by large dt errors. It is
hown that the algorithm can often converge in a ‘local’ optimum in
resence of a bad set of inputs (meaning large velocity model errors,
ad network configuration etc.). As an example, we also see the
trong dependence of the depth distribution to the initial depth used
or the Hypo71. Hypo71 fixes the depth at 5 km ( dz= 20 km) when
he constraints gi ven b y the input sets are too loose and the depth
rrors do not follow a strictly Gaussian distribution. The Gaussian
ail describes the tendency of Hypo71 to locate at shallower depths
due to the shallow initial depth). In addition, we note that although
he RMS are much larger, the RMS distribution does not follow
he mislocation linearly, so high RMS are not indicative of a large

islocation. 
From this first-order comparison, we show that the two inversion
ethods have very different output variations in response to our
odel design. Non-LinLoc epicentres are very robust (less than
 km error) to changes in network geometry, velocity model or
hase observations. The criterium for epicentre accuracy is proba-
l y too restricti v e for this inv ersion method (Bondar et al. 2004 ).
e vertheless, the trade-of f between depth and origin time is very

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae093#supplementary-data
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Figure 3. Left-side, the reference three layers 1-D velocity model. Right-side, the random velocity model, wrongly estimated, which will be used in the inverse 
problem. 

Table 4 Distribution laws for the random variables characterizing errors in the velocity model. 

VA Vp1 Vp2 Vp3 Vp 
Vs H1 

Loi U([-0.5 ;0.5]) U([-0.5 ;0.5]) U([-0.5 ;0.5]) N(0 ;0.023) U([-5 ;5]) 
Unit és km s −1 km s −1 km s −1 SU km 
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pronounced, and the depth error is of the same order as that ob- 
tained using the Hypo71 inversion and cannot be deciphered using 
the RMS. 

3.2 Main and total Sobol indices 

As described in Section 2.1 , the Sobol method deciphers the amount 
of variation in the output parameters that can be attributed to one or 
more inputs of our model. A preliminary ranking of the importance 
of each of the 14 input parameters X j ε { X netw ; X obs ; X vel } was 
provided by the preliminary analysis using the elementary effect 
method (Supporting Information Sup.1 ). This preliminary analysis 
showed the primary importance of the velocity of the layer in which 
the earthquake is actually located (Vp2) for depth variations, on 
the one hand. On the other hand, for errors in epicentral location, 
it showed the relative importance of inputs characterizing the net- 
work geometry such as the distance of the stations and primary 
azimuthal gap. These preliminary results were consistent with the 
most common criterion used to characterize the accuracy of epicen- 
tral locations (Bondar et al. 2004 ). Ho wever , the elementary effects 
method did not provide any quantitative insights into the impor- 
tance ranking and does only provide a qualitative information on 
the presence or absence of correlated errors. 

In this study, we focus mainly on the epicentral locations and 
depth errors ( d e = 

√ 

d x 2 + dy 2 , d z ) with a look at the origin-time 
errors and RMS variations in the discussion. Overall, the Sobol 
analysis finds a similar hierarchy to that proposed by the Morris 
analysis corresponding to the relative values of total ( S T ) Sobol 
indices between each input variable X j (red bars in Fig. 5 ). In 
addition, the Sobol method provides the proportion of the total 
effect that is due solely to the variation of the variable without 
considering the effect of its interaction with other inputs as showed 
as the main Sobol index ( S 1 ) (blue bars in Fig. 5 ). The difference 
between the total and the main effect indicates the proportion of the 
outputs variance that is due to the interaction of the input variable X j 

with the other ones. It should be noted that the sum of all ST indices 
is al wa ys greater than one in presence of correlated interactions, as 
these interactions are shared over several inputs. 

For the depth errors, the effects of interactions between input 
variables are not dominant (Fig. 5 a). The good approximation of 
the crustal velocity model accounts for 99 per cent of the depth 
error in our model. In particular, the velocity of the lay er w here the 
earthquake is located (Vp2) accounts for 71 ± 2 and 83 ± 3 % of 
the variance in the hypocentral depth, considering its main and total 
ef fects, respecti vel y. In second and third places are the thickness 
of the layer (H1: 10% ±1 by main effect S 1 ) and the velocity of 
the superficial layer (Vp1: 5% ±1 by main effect S 1 ). The inputs 
describing the geometry of the local network are not important 
for the depth estimation alone, but they have a small influence in 
the presence of a poor approximation of the velocity model (up to 
5 ±1 % for S T indices). Six of the fourteen inputs appear to have 
negligible effects on the depth error with Sobol S T indices below 

0.5%. These include the observation inputs (ErrP, ErrS, ErrS c, nS) 
and the Vp/Vs ratio (Vp/Vs). With the same trend, the variations in 
the earthquake origin time depend quasi e xclusiv ely on the velocity 
model inputs (Vp2, Vp1, H1), with very few interactions and almost 
no effect from the observation errors and the network geometry 
(Fig. 5 c). 

In contrast, Fig. 5 (b) shows that a very large part of the epicen- 
tral location errors ( de) comes from these interactions between the 

art/ggae093_f3.eps
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Figure 4. Representation of the 5 × 5 symmetric matrix of the model’s M 1 output distributions using the NonLinLoc inversion. From top to bottom and left to 
right: X -axis error dx (km); Y -axis error dy (km); depth error dz (km); time origin error dt (s) and RMS residuals (s), respecti vel y. On the diagonal, the density 
probability distribution of each output with respect to its xy -axis. Upper triangle: distributions of the 245 000 source solutions projected on respective output’s 
axis. We coloured in orange all the solutions with large dt errors ( dt > 0.4 s). Lower triangle: 2-D kernel density estimates of the distributions of the 245 000 
source solutions projected on the respective outputs axis. Large to low densities of points are represented from red to blue colours, respectively. 
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nputs of the model M 1 (red bars in Fig. 5 b). The three main input
ariables that share about 50% of the variance in the epicentral lo-
ations are the mean distance between the source stations (Dmoy:
3% ±13 per cent ), the deviation of the mean distance that allows us
o generate more chaotic geometries with various interstation dis-
ances (Emoy: 60 ±6 per cent ) and the velocity of the layer where the
arthquake is actually sited (Vp2: 48% ±4 per cent ). In the fourth
ank comes the primary azimuthal gap with 27% ±5 of shared influ-
nce. The predominant effect of the primary azimuthal gap has been
sed in several studies to derive high-quality locations in seismic
atalogues (e.g. Bondar et al. 2004 ; Bondar & McLaughlin. 2009 ;
omax et al. 2001 ). 
Finally, the Sobol indices of observation error for the P and S
hases for the nearest station show that they play a negligible role
n the epicentral error. The velocity of the layer below the reference
ocation (Vp3) has no effect on any of the output parameters, since
he seismic ray path does not pass through this layer, regardless
f which inversion algorithm we use. All other input parameters
ave a small influence of less than 10 per cent of the variance
ecomposition of the epicentral er rors. Er rors in the observations,
s well as the effect of the number of detected S phases (nS) and the
p/Vs ratio, only play a role in the final RMS value, meaning that

hese errors are well handled by the earthquake location inversion
ethod (Fig. 5 d). 

art/ggae093_f4.eps
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Figure 5. Histograms of main (blue bars) and total (red bars) Sobol indices of the 14 model’s M1 inputs with regards to: (a) the depth error dz , (b) the 
epicentral error de , (c) the error in origin time dt and (d) the RM S . The model M1 corresponds to the simulation with a NonLinLoc inversion. 
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Sobol indices obtained for the model using M 2 with the Hypo71 
inversion are governed by the interactions between the input vari- 
ables (Suppor ting Infor mation Sup.3 ). Regarding the variations of 
their outputs, the importance rankings and Sobol indices for the 
output source parameters of the two inversion methods are very 
different despite the very close model design. The five outputs ( dx , 
dy , dz , dt and RMS) are sensitive to all the input variables (except 
Vp3) with varying importance rankings. For NonLinLoc inversion, 
it seems that all errors relative to the S -phases are not involved in the 
depth estimation. Hypocentral locations using a Hypo71 inversion 
are especially more sensitive to errors in observations and to the 
number of S seismic phases used. The origin time errors are not 
only due to the velocity model inputs but also to the number of S 
phases used and to the network geometry. Here, the application of 
the Sobol-Monte-Carlo analysis provides keys to understanding the 
advantages and the disadvantages of an inversion method. 

3.3 Details on the interactions: second-order indices 

As shown pre viousl y, the hypocentral locations obtained from the 
sensiti vity anal ysis for a NonLinLoc inversion ( M 1 ) are less subject 
to interactions between inputs than those for a Hypo71 inversion 
( M 2 ). On the one hand, for M 1 , most of these interactions concerns 
the epicentral error ( dx and dy) and the RMS variations which are 
in fact very robust ( de < 1 km ). Ho wever , it is still interesting to 
understand the few interactions that are present. The second-order 
Sobol indices give us a closer look at the pair-wise relationships 
between the inputs in the model. In particular, for the two models and 
for each input, the greatest interactions concern either the velocities 
random variables (RV vel) with some network geometry inputs (RV 
netw) (Fig. 6 ). For the depth estimation, the main interactions are 
from the interaction of the minimum distance, mean distance, and 
mean ele v ation of the stations with the velocity of the main layer 
(Vp2) (Fig. 6 a). DT errors are influenced b y onl y four input variables 
(Fig. 6 c), and the mean distance of all stations (Dmoy) to the source 
is the only network geometry variable that acts through the mean 
of interactions with random velocity variab les (RV vel). F inally, 
the observation variables (RV obs) have a very little effect on the 
hypocentral location ( dx , dy , dz, dt) but have a main effect on 
the RMS value. 

On the other hand, for the Hypo71 inversion M 2 , the main inter- 
action is clearly between the velocity of the second layer and the 
minimum source-station distance (Suppor ting Infor mation Sup.4 ) 
for the depth estimation. Also, errors in the observations (RV obs) 
have a much larger impact on all outputs ( dx , dy , d z, d t , r ms),
particularly on the dt errors and the RMS and their effects are 
more complex due to interactions. This implies that these errors 
are probably much more difficult to correct using the Hypo71 in- 
version algorithm even when they are known. Small changes in 
phase picking arri v al times can af fect the depth and origin time 
resolution when using Hypo71, but less so when using NonLinLoc. 
NonLinLoc would therefore give more stable results when picking 
is difficult (note however that w e ha ve assumed that picking errors 
are normally distributed). 

3.4 Insights on the outputs’ variations 

To examine the cov ariance ef fects of the inputs on the depth distribu- 
tion, we project the distributions of dz for the 245 000 experiments 
onto the domain of definition of each of the 14 inputs of the model 

art/ggae093_f5.eps
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Figure 6. Radial plot showing the first, total and secondary Sobol indices above 1 per cent for (a) the depth error dz , (b) the epicentral location error de , 
(c) the error on the time origin dt and (d) the RM S .Inner blue circles correspond to the main effect and outer red circles to the total effect including all the 
interactions. Their size is relative to their share in the variance of the output. Second order indices are represented by the black lines between pairwise inputs. 
The line width is relative to the value of the second order Sobol indices. 
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Fig. 7 ). These projections provide additional insight into the overall
ffect of each variable on dz. It should be noticed that the projec-
ions display the uniform distributions that we designed for variables
 Gap 1 , Emoy , Dmin , Dmoy , V p 1 , V p 2 , V p 3 , H 1 , nS} ,
nd Gaussian distributions for other variables (Fig. 7 ) The total
istribution of dz (on all y -axes of Fig. 7 subfigures) remains un-
hanged from one subfigure to another and accounts for the total
ffects of all inputs variables. 

Fig. 7 confirms that some inputs variables
ave no clear impact on the depth distribution
 Er r P , ErrPc , ErrS , ErrSc , V p/V s, nS, V p 3 , Gap 1 ).
or the other ones, we can better understand the real effect that
he input variable produces on the depth estimation. As depicted
y Sobol indices (Fig. 6 a), the error on Vp2 has a monotonic
nd quasi-linear impact on dz . More precisely, it shows that an
nderestimation of Vp2 of 0.5 km s −1 implies a ne gativ e dz bias
f 5 km ( = z 0 − z i meaning that the experience has overestimated
he depth) (Fig. 7 .a3). The same observation is also evidenced for
he M2 scenario (Suppor ting Infor mation Sup.7 ). A lower velocity
ithin a layer above (Vp1 or Vp2) indicates a delayed arri v al

ime of the seismic phase at each station, resulting in a greater
nferred depth for a given origin time. This trend is depicted in
he same manner by looking at the covariance of dt varying of

1 s on average with regards to velocities variation (Supporting
nformation Sup.6 ). Finally, looking at the x -axis errors dx we
ee that, even if the variations are smaller than the ones observed

art/ggae093_f6.eps
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Figure 7. The distribution of depth errors dz (on all y -axes) for the model M1 is projected onto the domain of definition of each input v ariable (v arying on the 
x -axis of each sub-figure). The 245 000 output depth values from M1 are displayed using a colour scale that represents the density of points. 
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for the depth estimations, there is also a bias due to the under or 
ov erestimation of v elocities (Suppor ting Infor mation Sup.5 ). Non- 
LinLoc algorithm might compensate the depth increase induced 
by the velocity error of the second layer by putting the epicentre a 
few hundred meters to the west. This compensation is even more 
pronounced for the model M2 (Supporting Information Sup.8 ) with 
an epicentre bias of ±2.5 km in average for a change in 0.5 km s −1 

in V p2 . 
The two models share as well another bias due to the layers’ 

discontinuities of the 1-D velocity model. Both models show a 
tendency to assign the earthquake depth onto the layer discontinu- 
ity, resulting in a clustering of relocated events that correspond to 
changes in the discontinuity (Fig. 7 .b2). For the M2 model, this 
depth bias due to the position of the layer is even more common 
than the bias of the M2 model to fix the depth at its initial value of 
5 km ( dz= 20 km) (Supporting Information Sup.8 ). Once again, the 
NonLinLoc inversion seems more stable. 

Finall y, the three v ariables associated to source-station distance 
( Dmin, Emoy , Dmoy ) present a similar impact on dz. A more 
robust depth estimation is obtained for closer and less chaotically 
distributed stations (Figs 7 .a2, b1 and c1). This impact is as well 
depicted for dx errors. These input variables do not change the mean 
location error but increase their dispersion. Far away is the closest 
station ( Dmin ) or the mean source-station distance ( Dmoy) and 
larger is the standard deviation of location errors. 
4  D I S C U S S I O N  A N D  C O N C LU S I O N  

This study is a first application of GSA to quantify and a better un- 
derstand earthquake location uncertainties. We have proposed here 
a simple model design for an earthquake located at 25 km depth in 
a 1-D velocity model and detected by 10 stations at local distance 
( < 150 km). It provides some quantitative insights into the ability 
of two earthquake location algorithms routinely used in seismol- 
ogy, Hypo71 and NonLinLoc, to estimate an accurate and precise 
location. We show that the uncertainty in the epicentral location 
is highly dependent on the inversion method. The NonLinLoc al- 
gorithm is able to find an accurate and ±1 km precise epicentral 
location for all experiences of our model even in the presence of 
large errors in the crustal velocities. The Hypo71 algorithm is much 
more sensitive to interactions between errors in arri v al-time obser- 
vations, the network geometry and the poor approximation of the 
crustal velocity model. Even though they are not sensitive to the 
same input variables or not even in the same way (with or without 
interactions), both inversion methods show approximately the same 
standard deviation for the depth estimation errors of approximately 
±9 km. This analysis confirms that NonLinLoc provides a stable 
and very robust epicentral location. Nevertheless, it proves that the 
error on the depth estimation is mainly due to the error of ±0.5 km 

s −1 in the velocity of the layer in which the earthquake is sited. This 
affirmation is supported by some tests of M2 model for different 
depth of the reference event (Suppor ting Infor mation Sup.9 ), which 
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hows that if the earthquake is sited in the third layer, the velocity
f the third layer has the largest total effect. We propose a way to
uantify this strong dependence of depth estimation on the accuracy
f the velocity model. Therefore, in order to reduce the uncertainties
n earthquake location, it seems crucial to focus on improving the
ccurac y of v elocity models and to promote the use of local 3-D
elocity models. This is already promoted by numerous seismolog-
cal studies (e.g. Lomax et al. 2009 ; Husen et al. 2003 ; Wagner
t al. 2013 ; Turquet et al. 2019 ). Improving the network geometry
r the earthquake location algorithm seems to have less impact on
he depth resolution, but still remains crucial for constraining the
picentral locations. 

Our analysis does not attempt to reproduce errors arising from
he heterogeneity of the Earth model. The use of a 3-D velocity as
 reference will add a lot of complexity and is likely to increase
he influence of the velocity model on hypocentral errors. Ho wever ,
umerous runs of GSA can be performed by slightly changing the
odel design to better match a specific configuration (a context with
 known seismological network but larger uncertainties in the ve-
ocity model, or a context with very few three-component stations).
his global sensitivity approach is easily adaptable to deciphering
arthquake location uncertainties for fixed seismological networks
t local and regional scale. It can be adapted to worst-case scenarios
here a lot of seismic phases are misinterpreted with larger errors

n the seismic phase arri v al-times observ ations. For a more realistic
iew of the uncertainties due to errors in the velocity model approx-
mation, it would be interesting to perform a GSA for a synthetic
vent located in a 3-D velocity model that has been interpreted as
-D in the inversion process. 
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ond ár , I. , Myers, S.C., Engdahl, E.R. & Bergman, E.A., 2004. Epicentre
accuracy based on seismic network criteria. Geophys. J. Int., 156 (3), 483–
496. 

orras Mora , E. , Spelling, J. & van der Weijde, A.H., 2021. Global sensitivity
analysis for offshore wind cost modelling. Wind Energy, 24 (9), 974–990.

oyd , T.M. & Snoke, J.A., 1984. Error estimates in some commonly used
earthquake location programs. Earthq. Notes, 55 (2), 3–6. 

ampolongo , F. , Saltelli, A. & Cariboni, J., 2011.From screening to quan-
titati ve sensiti vity anal ysis.A unified approach. Comput. Phys. Commun.,
182 , 978–988. 

he vrot , S. , Sylv ander , M., V illase ̃ nor , A., D ́ıaz, J., Stehly, L., Bou é, P. & Vi-
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